Applications of Invariance in Computer Vision

Applications of Invariance in Computer Vision
Author :
Publisher : Springer Science & Business Media
Total Pages : 536
Release :
ISBN-10 : 3540582401
ISBN-13 : 9783540582403
Rating : 4/5 (01 Downloads)

Synopsis Applications of Invariance in Computer Vision by : Joseph L. Mundy

This book is the proceedings of the Second Joint European-US Workshop on Applications of Invariance to Computer Vision, held at Ponta Delgada, Azores, Portugal in October 1993. The book contains 25 carefully refereed papers by distinguished researchers. The papers cover all relevant foundational aspects of geometric and algebraic invariance as well as applications to computer vision, particularly to recovery and reconstruction, object recognition, scene analysis, robotic navigation, and statistical analysis. In total, the collection of papers, together with an introductory survey by the editors, impressively documents that geometry, in its different variants, is the most successful and ubiquitous tool in computer vision.

Geometric Invariance in Computer Vision

Geometric Invariance in Computer Vision
Author :
Publisher :
Total Pages : 568
Release :
ISBN-10 : UOM:39015048323789
ISBN-13 :
Rating : 4/5 (89 Downloads)

Synopsis Geometric Invariance in Computer Vision by : Joseph L. Mundy

These twenty-three contributions focus on the most recent developments in the rapidly evolving field of geometric invariants and their application to computer vision. The introduction summarizes the basics of invariant theory, discusses how invariants are related to problems in computer vision, and looks at the future possibilities, particularly the notion that invariant analysis might provide a solution to the elusive problem of recognizing general curved 3D objects from an arbitrary viewpoint. The remaining chapters consist of original papers that present important developments as well as tutorial articles that provide useful background material. These chapters are grouped into categories covering algebraic invariants, nonalgebraic invariants, invariants of multiple views, and applications. An appendix provides an extensive introduction to projective geometry and its applications to basic problems in computer vision.

Invariants for Pattern Recognition and Classification

Invariants for Pattern Recognition and Classification
Author :
Publisher : World Scientific
Total Pages : 249
Release :
ISBN-10 : 9789810242787
ISBN-13 : 9810242786
Rating : 4/5 (87 Downloads)

Synopsis Invariants for Pattern Recognition and Classification by : Marcos A. Rodrigues

This book was conceived from the realization that there was a need to update recent work on invariants in a single volume providing a useful set of references and pointers to related work. Since the publication in 1992 of J L Mundy and A Zisserman's Geometric Invariance in Computer Vision, the subject has been evolving rapidly. New approaches to invariants have been proposed and novel ways of defining and applying invariants to practical problem solving are testimony to the fundamental importance of the study of invariants to machine vision. This book represents a snapshot of current research around the world. A version of this collection of papers has appeared in the International Journal of Pattern Recognition and Artificial Intelligence (December 1999). The papers in this book are extended versions of the original material published in the journal. They are organized into two categories: foundations and applications. Foundation papers present new ways of defining or analyzing invariants, andapplication papers present novel ways in which known invariant theory is extended and effectively applied to real-world problems in interesting and difficult contexts. Each category contains roughly half of the papers, but there is considerable overlap. All papers carry an element of novelty and generalization that will be useful to theoreticians and practitioners alike. It is hoped that this volume will be not only useful but also inspirational to researchers in image processing, pattern recognition and computer vision at large.

Emerging Topics in Computer Vision and Its Applications

Emerging Topics in Computer Vision and Its Applications
Author :
Publisher : World Scientific
Total Pages : 508
Release :
ISBN-10 : 9789814343008
ISBN-13 : 9814343005
Rating : 4/5 (08 Downloads)

Synopsis Emerging Topics in Computer Vision and Its Applications by : C. H. Chen

This book gives a comprehensive overview of the most advanced theories, methodologies and applications in computer vision. Particularly, it gives an extensive coverage of 3D and robotic vision problems. Example chapters featured are Fourier methods for 3D surface modeling and analysis, use of constraints for calibration-free 3D Euclidean reconstruction, novel photogeometric methods for capturing static and dynamic objects, performance evaluation of robot localization methods in outdoor terrains, integrating 3D vision with force/tactile sensors, tracking via in-floor sensing, self-calibration of camera networks, etc. Some unique applications of computer vision in marine fishery, biomedical issues, driver assistance, are also highlighted.

Computer Vision Metrics

Computer Vision Metrics
Author :
Publisher : Apress
Total Pages : 498
Release :
ISBN-10 : 9781430259305
ISBN-13 : 1430259302
Rating : 4/5 (05 Downloads)

Synopsis Computer Vision Metrics by : Scott Krig

Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.

Computer Vision - ECCV 2008

Computer Vision - ECCV 2008
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 8354088685
ISBN-13 : 9788354088684
Rating : 4/5 (85 Downloads)

Synopsis Computer Vision - ECCV 2008 by : David Hutchison

The four-volume set comprising LNCS volumes 5302/5303/5304/5305 constitutes the refereed proceedings of the 10th European Conference on Computer Vision, ECCV 2008, held in Marseille, France, in October 2008. The 243 revised papers presented were carefully reviewed and selected from a total of 871 papers submitted. The four books cover the entire range of current issues in computer vision. The papers are organized in topical sections on recognition, stereo, people and face recognition, object tracking, matching, learning and features, MRFs, segmentation, computational photography and active reconstruction.

Color in Computer Vision

Color in Computer Vision
Author :
Publisher : John Wiley & Sons
Total Pages : 0
Release :
ISBN-10 : 0470890843
ISBN-13 : 9780470890844
Rating : 4/5 (43 Downloads)

Synopsis Color in Computer Vision by : Theo Gevers

While the field of computer vision drives many of today’s digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding. Based on the authors’ intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theories, techniques, machine learning, and applications. The fundamental basics, sample applications, and downloadable versions of the software and data sets are also included. Clear, thorough, and practical, Color in Computer Vision explains: Computer vision, including color-driven algorithms and quantitative results of various state-of-the-art methods Color science topics such as color systems, color reflection mechanisms, color invariance, and color constancy Digital image processing, including edge detection, feature extraction, image segmentation, and image transformations Signal processing techniques for the development of both image processing and machine learning Robotics and artificial intelligence, including such topics as supervised learning and classifiers for object and scene categorization Researchers and professionals in computer science, computer vision, color science, electrical engineering, and signal processing will learn how to implement color in computer vision applications and gain insight into future developments in this dynamic and expanding field.

Moments and Moment Invariants in Pattern Recognition

Moments and Moment Invariants in Pattern Recognition
Author :
Publisher : John Wiley & Sons
Total Pages : 312
Release :
ISBN-10 : 0470684763
ISBN-13 : 9780470684764
Rating : 4/5 (63 Downloads)

Synopsis Moments and Moment Invariants in Pattern Recognition by : Jan Flusser

Moments as projections of an image’s intensity onto a proper polynomial basis can be applied to many different aspects of image processing. These include invariant pattern recognition, image normalization, image registration, focus/ defocus measurement, and watermarking. This book presents a survey of both recent and traditional image analysis and pattern recognition methods, based on image moments, and offers new concepts of invariants to linear filtering and implicit invariants. In addition to the theory, attention is paid to efficient algorithms for moment computation in a discrete domain, and to computational aspects of orthogonal moments. The authors also illustrate the theory through practical examples, demonstrating moment invariants in real applications across computer vision, remote sensing and medical imaging. Key features: Presents a systematic review of the basic definitions and properties of moments covering geometric moments and complex moments. Considers invariants to traditional transforms – translation, rotation, scaling, and affine transform - from a new point of view, which offers new possibilities of designing optimal sets of invariants. Reviews and extends a recent field of invariants with respect to convolution/blurring. Introduces implicit moment invariants as a tool for recognizing elastically deformed objects. Compares various classes of orthogonal moments (Legendre, Zernike, Fourier-Mellin, Chebyshev, among others) and demonstrates their application to image reconstruction from moments. Offers comprehensive advice on the construction of various invariants illustrated with practical examples. Includes an accompanying website providing efficient numerical algorithms for moment computation and for constructing invariants of various kinds, with about 250 slides suitable for a graduate university course. Moments and Moment Invariants in Pattern Recognition is ideal for researchers and engineers involved in pattern recognition in medical imaging, remote sensing, robotics and computer vision. Post graduate students in image processing and pattern recognition will also find the book of interest.

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision
Author :
Publisher : Cambridge University Press
Total Pages : 676
Release :
ISBN-10 : 9781139449144
ISBN-13 : 1139449141
Rating : 4/5 (44 Downloads)

Synopsis Multiple View Geometry in Computer Vision by : Richard Hartley

A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.