The Application of Bayesian Networks in System Reliability

The Application of Bayesian Networks in System Reliability
Author :
Publisher :
Total Pages : 63
Release :
ISBN-10 : OCLC:904441952
ISBN-13 :
Rating : 4/5 (52 Downloads)

Synopsis The Application of Bayesian Networks in System Reliability by : Duan Zhou

In this paper, a literature review is presented on the application of Bayesian networks applied in system reliability analysis. It is shown that Bayesian networks have become a popular modeling framework for system reliability analysis due to the benefits that Bayesian networks have the capability and flexibility to model complex systems, update the probability according to evidences and give a straightforward and compact graphical representation. Research on approaches for Bayesian network learning and inference are summarized. Two groups of models with multistate nodes were developed for scenarios from constant to continuous time to apply and contrast Bayesian networks with classical fault tree method. The expanded model discretized the continuous variables and provided failure related probability distribution over time.

Benefits of Bayesian Network Models

Benefits of Bayesian Network Models
Author :
Publisher : John Wiley & Sons
Total Pages : 146
Release :
ISBN-10 : 9781119347446
ISBN-13 : 1119347440
Rating : 4/5 (46 Downloads)

Synopsis Benefits of Bayesian Network Models by : Philippe Weber

The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty. This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems. Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.

Bayesian Networks for Reliability Engineering

Bayesian Networks for Reliability Engineering
Author :
Publisher : Springer
Total Pages : 259
Release :
ISBN-10 : 9789811365164
ISBN-13 : 9811365164
Rating : 4/5 (64 Downloads)

Synopsis Bayesian Networks for Reliability Engineering by : Baoping Cai

This book presents a bibliographical review of the use of Bayesian networks in reliability over the last decade. Bayesian network (BN) is considered to be one of the most powerful models in probabilistic knowledge representation and inference, and it is increasingly used in the field of reliability. After focusing on the engineering systems, the book subsequently discusses twelve important issues in the BN-based reliability methodologies, such as BN structure modeling, BN parameter modeling, BN inference, validation, and verification. As such, it is a valuable resource for researchers and practitioners in the field of reliability engineering.

A Bayesian Network Approach to Early Reliability Assessment of Complex Systems

A Bayesian Network Approach to Early Reliability Assessment of Complex Systems
Author :
Publisher :
Total Pages : 143
Release :
ISBN-10 : OCLC:953971578
ISBN-13 :
Rating : 4/5 (78 Downloads)

Synopsis A Bayesian Network Approach to Early Reliability Assessment of Complex Systems by : Petek Yontay

Bayesian networks are powerful tools in system reliability assessment due to their flexibility in modeling the reliability structure of complex systems. This dissertation develops Bayesian network models for system reliability analysis through the use of Bayesian inference techniques.Bayesian networks generalize fault trees by allowing components and subsystems to be related by conditional probabilities instead of deterministic relationships; thus, they provide analytical advantages to the situation when the failure structure is not well understood, especially during the product design stage. In order to tackle this problem, one needs to utilize auxiliary information such as the reliability information from similar products and domain expertise. For this purpose, a Bayesian network approach is proposed to incorporate data from functional analysis and parent products. The functions with low reliability and their impact on other functions in the network are identified, so that design changes can be suggested for system reliability improvement.A complex system does not necessarily have all components being monitored at the same time, causing another challenge in the reliability assessment problem. Sometimes there are a limited number of sensors deployed in the system to monitor the states of some components or subsystems, but not all of them. Data simultaneously collected from multiple sensors on the same system are analyzed using a Bayesian network approach, and the conditional probabilities of the network are estimated by combining failure information and expert opinions at both system and component levels. Several data scenarios with discrete, continuous and hybrid data (both discrete and continuous data) are analyzed. Posterior distributions of the reliability parameters of the system and components are assessed using simultaneous data.Finally, a Bayesian framework is proposed to incorporate different sources of prior information and reconcile these different sources, including expert opinions and component information, in order to form a prior distribution for the system. Incorporating expert opinion in the form of pseudo-observations substantially simplifies statistical modeling, as opposed to the pooling techniques and supra Bayesian methods used for combining prior distributions in the literature.The methods proposed are demonstrated with several case studies.

Practical Applications of Bayesian Reliability

Practical Applications of Bayesian Reliability
Author :
Publisher : John Wiley & Sons
Total Pages : 322
Release :
ISBN-10 : 9781119288008
ISBN-13 : 1119288002
Rating : 4/5 (08 Downloads)

Synopsis Practical Applications of Bayesian Reliability by : Yan Liu

Demonstrates how to solve reliability problems using practical applications of Bayesian models This self-contained reference provides fundamental knowledge of Bayesian reliability and utilizes numerous examples to show how Bayesian models can solve real life reliability problems. It teaches engineers and scientists exactly what Bayesian analysis is, what its benefits are, and how they can apply the methods to solve their own problems. To help readers get started quickly, the book presents many Bayesian models that use JAGS and which require fewer than 10 lines of command. It also offers a number of short R scripts consisting of simple functions to help them become familiar with R coding. Practical Applications of Bayesian Reliability starts by introducing basic concepts of reliability engineering, including random variables, discrete and continuous probability distributions, hazard function, and censored data. Basic concepts of Bayesian statistics, models, reasons, and theory are presented in the following chapter. Coverage of Bayesian computation, Metropolis-Hastings algorithm, and Gibbs Sampling comes next. The book then goes on to teach the concepts of design capability and design for reliability; introduce Bayesian models for estimating system reliability; discuss Bayesian Hierarchical Models and their applications; present linear and logistic regression models in Bayesian Perspective; and more. Provides a step-by-step approach for developing advanced reliability models to solve complex problems, and does not require in-depth understanding of statistical methodology Educates managers on the potential of Bayesian reliability models and associated impact Introduces commonly used predictive reliability models and advanced Bayesian models based on real life applications Includes practical guidelines to construct Bayesian reliability models along with computer codes for all of the case studies JAGS and R codes are provided on an accompanying website to enable practitioners to easily copy them and tailor them to their own applications Practical Applications of Bayesian Reliability is a helpful book for industry practitioners such as reliability engineers, mechanical engineers, electrical engineers, product engineers, system engineers, and materials scientists whose work includes predicting design or product performance.

Reliability Models of Complex Systems for Robots and Automation

Reliability Models of Complex Systems for Robots and Automation
Author :
Publisher : CRC Press
Total Pages : 88
Release :
ISBN-10 : 9781351337328
ISBN-13 : 1351337327
Rating : 4/5 (28 Downloads)

Synopsis Reliability Models of Complex Systems for Robots and Automation by : Hamed Fazlollahtabar

Availability of a system is a crucial factor for planning and optimization. The concept is more challenging for modern systems such as robots and autonomous systems consisting of a complex configuration of components. As complex systems have become global and essential in today’s society, their reliable design and the determination of their availability have turned into a very important task for managers and engineers. Reliability Models of Complex Systems for Robots and Automation offers different models and approaches for reliability evaluation and optimization of a complex autonomous system. Comprehensive fault tree analysis on the critical components of industrial robots and its integration with the reliability block diagram approach is designed in order to investigate the robot system reliability. The cost and hazard decision tree are integrated for the first time in an approach to evaluate the reliability of a complex system. Considers a complex production system composing of several autonomous robots Develops binary state reliability evaluation model for a complex system Introduces new concepts of hazard decision tree Proposes fault tree and reliability block diagram for complex robotic systems Develops stochastic process based reliability evaluation and optimization models Today’s competitive world with increasing customer demands for highly reliable products makes reliability engineering a more challenging task. Reliability analysis is one of the main tools to ensure agreed delivery deadlines which in turn maintains certainty in real tangible factors such as customer goodwill and company reputation.

Multi-state System Reliability: Assessment, Optimization And Applications

Multi-state System Reliability: Assessment, Optimization And Applications
Author :
Publisher : World Scientific Publishing Company
Total Pages : 375
Release :
ISBN-10 : 9789813106147
ISBN-13 : 981310614X
Rating : 4/5 (47 Downloads)

Synopsis Multi-state System Reliability: Assessment, Optimization And Applications by : Gregory Levitin

Most books on reliability theory are devoted to traditional binary reliability models allowing for only two possible states for a system and its components: perfect functionality and complete failure. However, many real-world systems are composed of multi-state components, which have different performance levels and several failure modes with various effects on the entire system performance (degradation). Such systems are called Multi-State Systems (MSS). The examples of MSS are power systems where the component performance is characterized by the generating capacity, computer systems where the component performance is characterized by the data processing speed, communication systems, etc.This book is the first to be devoted to Multi-State System (MSS) reliability analysis and optimization. It provides a historical overview of the field, presents basic concepts of MSS, defines MSS reliability measures, and systematically describes the tools for MSS reliability assessment and optimization. Basic methods for MSS reliability assessment, such as a Boolean methods extension, basic random process methods (both Markov and semi-Markov) and universal generating function models, are systematically studied. A universal genetic algorithm optimization technique and all details of its application are described. All the methods are illustrated by numerical examples. The book also contains many examples of application of reliability assessment and optimization methods to real engineering problems.The aim of this book is to give a comprehensive, up-to-date presentation of MSS reliability theory based on modern advances in this field and provide a theoretical summary and examples of engineering applications to a variety of technical problems. From this point of view the book bridges the gap between theoretical advances and practical reliability engineering.

Risk and Reliability Analysis: Theory and Applications

Risk and Reliability Analysis: Theory and Applications
Author :
Publisher : Springer
Total Pages : 558
Release :
ISBN-10 : 9783319524252
ISBN-13 : 3319524259
Rating : 4/5 (52 Downloads)

Synopsis Risk and Reliability Analysis: Theory and Applications by : Paolo Gardoni

This book presents a unique collection of contributions from some of the foremost scholars in the field of risk and reliability analysis. Combining the most advanced analysis techniques with practical applications, it is one of the most comprehensive and up-to-date books available on risk-based engineering. All the fundamental concepts needed to conduct risk and reliability assessments are covered in detail, providing readers with a sound understanding of the field and making the book a powerful tool for students and researchers alike. This book was prepared in honor of Professor Armen Der Kiureghian, one of the fathers of modern risk and reliability analysis.

Recent Advances in Multi-state Systems Reliability

Recent Advances in Multi-state Systems Reliability
Author :
Publisher : Springer
Total Pages : 378
Release :
ISBN-10 : 9783319634234
ISBN-13 : 3319634232
Rating : 4/5 (34 Downloads)

Synopsis Recent Advances in Multi-state Systems Reliability by : Anatoly Lisnianski

This book addresses a modern topic in reliability: multi-state and continuous-state system reliability, which has been intensively developed in recent years. It offers an up-to-date overview of the latest developments in reliability theory for multi-state systems, engineering applications to a variety of technical problems, and case studies that will be of interest to reliability engineers and industrial managers. It also covers corresponding theoretical issues, as well as case studies illustrating the applications of the corresponding theoretical advances. The book is divided into two parts: Modern Mathematical Methods for Multi-state System Reliability Analysis (Part 1), and Applications and Case Studies (Part 2), which examines real-world multi-state systems. It will greatly benefit scientists and researchers working in reliability, as well as practitioners and managers with an interest in reliability and performability analysis. It can also be used as a textbook or as a supporting text for postgraduate courses in Industrial Engineering, Electrical Engineering, Mechanical Engineering, Applied Mathematics, and Operations Research.