Applicable Differential Geometry

Applicable Differential Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 408
Release :
ISBN-10 : 0521231906
ISBN-13 : 9780521231909
Rating : 4/5 (06 Downloads)

Synopsis Applicable Differential Geometry by : M. Crampin

An introduction to geometrical topics used in applied mathematics and theoretical physics.

Applied Differential Geometry

Applied Differential Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 440
Release :
ISBN-10 : 0521269296
ISBN-13 : 9780521269292
Rating : 4/5 (96 Downloads)

Synopsis Applied Differential Geometry by : William L. Burke

This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.

Modern Differential Geometry for Physicists

Modern Differential Geometry for Physicists
Author :
Publisher : Allied Publishers
Total Pages : 308
Release :
ISBN-10 : 8177643169
ISBN-13 : 9788177643169
Rating : 4/5 (69 Downloads)

Synopsis Modern Differential Geometry for Physicists by : Chris J. Isham

Differential Geometry and Statistics

Differential Geometry and Statistics
Author :
Publisher : CRC Press
Total Pages : 292
Release :
ISBN-10 : 0412398605
ISBN-13 : 9780412398605
Rating : 4/5 (05 Downloads)

Synopsis Differential Geometry and Statistics by : M.K. Murray

Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics. It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry.

Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds

Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds
Author :
Publisher : Springer
Total Pages : 134
Release :
ISBN-10 : 9783319562643
ISBN-13 : 3319562649
Rating : 4/5 (43 Downloads)

Synopsis Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds by : Uwe Mühlich

This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.

Differential Geometry

Differential Geometry
Author :
Publisher : Courier Corporation
Total Pages : 404
Release :
ISBN-10 : 9780486157207
ISBN-13 : 0486157202
Rating : 4/5 (07 Downloads)

Synopsis Differential Geometry by : Heinrich W. Guggenheimer

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.

Introduction to Differential Geometry

Introduction to Differential Geometry
Author :
Publisher : Springer Nature
Total Pages : 426
Release :
ISBN-10 : 9783662643402
ISBN-13 : 3662643405
Rating : 4/5 (02 Downloads)

Synopsis Introduction to Differential Geometry by : Joel W. Robbin

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Differential Geometry and Mathematical Physics

Differential Geometry and Mathematical Physics
Author :
Publisher : Springer Science & Business Media
Total Pages : 766
Release :
ISBN-10 : 9789400753457
ISBN-13 : 9400753454
Rating : 4/5 (57 Downloads)

Synopsis Differential Geometry and Mathematical Physics by : Gerd Rudolph

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

A New Approach to Differential Geometry using Clifford's Geometric Algebra

A New Approach to Differential Geometry using Clifford's Geometric Algebra
Author :
Publisher : Springer Science & Business Media
Total Pages : 472
Release :
ISBN-10 : 9780817682835
ISBN-13 : 081768283X
Rating : 4/5 (35 Downloads)

Synopsis A New Approach to Differential Geometry using Clifford's Geometric Algebra by : John Snygg

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.

Manifolds, Sheaves, and Cohomology

Manifolds, Sheaves, and Cohomology
Author :
Publisher : Springer
Total Pages : 366
Release :
ISBN-10 : 9783658106331
ISBN-13 : 3658106336
Rating : 4/5 (31 Downloads)

Synopsis Manifolds, Sheaves, and Cohomology by : Torsten Wedhorn

This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.