Apache Spark For The Enterprise Setting The Business Free
Download Apache Spark For The Enterprise Setting The Business Free full books in PDF, epub, and Kindle. Read online free Apache Spark For The Enterprise Setting The Business Free ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Oliver Draese |
Publisher |
: IBM Redbooks |
Total Pages |
: 56 |
Release |
: 2016-02-09 |
ISBN-10 |
: 9780738455044 |
ISBN-13 |
: 0738455040 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Apache Spark for the Enterprise: Setting the Business Free by : Oliver Draese
Analytics is increasingly an integral part of day-to-day operations at today's leading businesses, and transformation is also occurring through huge growth in mobile and digital channels. Enterprise organizations are attempting to leverage analytics in new ways and transition existing analytics capabilities to respond with more flexibility while making the most efficient use of highly valuable data science skills. The recent growth and adoption of Apache Spark as an analytics framework and platform is very timely and helps meet these challenging demands. The Apache Spark environment on IBM z/OS® and Linux on IBM z SystemsTM platforms allows this analytics framework to run on the same enterprise platform as the originating sources of data and transactions that feed it. If most of the data that will be used for Apache Spark analytics, or the most sensitive or quickly changing data is originating on z/OS, then an Apache Spark z/OS based environment will be the optimal choice for performance, security, and governance. This IBM® RedpaperTM publication explores the enterprise analytics market, use of Apache Spark on IBM z SystemsTM platforms, integration between Apache Spark and other enterprise data sources, and case studies and examples of what can be achieved with Apache Spark in enterprise environments. It is of interest to data scientists, data engineers, enterprise architects, or anybody looking to better understand how to combine an analytics framework and platform on enterprise systems.
Author |
: Bill Chambers |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 594 |
Release |
: 2018-02-08 |
ISBN-10 |
: 9781491912294 |
ISBN-13 |
: 1491912294 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Spark: The Definitive Guide by : Bill Chambers
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Author |
: Lydia Parziale |
Publisher |
: IBM Redbooks |
Total Pages |
: 144 |
Release |
: 2016-08-13 |
ISBN-10 |
: 9780738414966 |
ISBN-13 |
: 0738414964 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Apache Spark Implementation on IBM z/OS by : Lydia Parziale
The term big data refers to extremely large sets of data that are analyzed to reveal insights, such as patterns, trends, and associations. The algorithms that analyze this data to provide these insights must extract value from a wide range of data sources, including business data and live, streaming, social media data. However, the real value of these insights comes from their timeliness. Rapid delivery of insights enables anyone (not only data scientists) to make effective decisions, applying deep intelligence to every enterprise application. Apache Spark is an integrated analytics framework and runtime to accelerate and simplify algorithm development, depoyment, and realization of business insight from analytics. Apache Spark on IBM® z/OS® puts the open source engine, augmented with unique differentiated features, built specifically for data science, where big data resides. This IBM Redbooks® publication describes the installation and configuration of IBM z/OS Platform for Apache Spark for field teams and clients. Additionally, it includes examples of business analytics scenarios.
Author |
: Dino Quintero |
Publisher |
: IBM Redbooks |
Total Pages |
: 126 |
Release |
: 2016-08-24 |
ISBN-10 |
: 9780738441931 |
ISBN-13 |
: 0738441937 |
Rating |
: 4/5 (31 Downloads) |
Synopsis IBM Data Engine for Hadoop and Spark by : Dino Quintero
This IBM® Redbooks® publication provides topics to help the technical community take advantage of the resilience, scalability, and performance of the IBM Power SystemsTM platform to implement or integrate an IBM Data Engine for Hadoop and Spark solution for analytics solutions to access, manage, and analyze data sets to improve business outcomes. This book documents topics to demonstrate and take advantage of the analytics strengths of the IBM POWER8® platform, the IBM analytics software portfolio, and selected third-party tools to help solve customer's data analytic workload requirements. This book describes how to plan, prepare, install, integrate, manage, and show how to use the IBM Data Engine for Hadoop and Spark solution to run analytic workloads on IBM POWER8. In addition, this publication delivers documentation to complement available IBM analytics solutions to help your data analytic needs. This publication strengthens the position of IBM analytics and big data solutions with a well-defined and documented deployment model within an IBM POWER8 virtualized environment so that customers have a planned foundation for security, scaling, capacity, resilience, and optimization for analytics workloads. This book is targeted at technical professionals (analytics consultants, technical support staff, IT Architects, and IT Specialists) that are responsible for delivering analytics solutions and support on IBM Power Systems.
Author |
: Raul Estrada |
Publisher |
: Apress |
Total Pages |
: 277 |
Release |
: 2016-09-29 |
ISBN-10 |
: 9781484221754 |
ISBN-13 |
: 1484221753 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Big Data SMACK by : Raul Estrada
Learn how to integrate full-stack open source big data architecture and to choose the correct technology—Scala/Spark, Mesos, Akka, Cassandra, and Kafka—in every layer. Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses. Big Data SMACK explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. This book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer: The language: Scala The engine: Spark (SQL, MLib, Streaming, GraphX) The container: Mesos, Docker The view: Akka The storage: Cassandra The message broker: Kafka What You Will Learn: Make big data architecture without using complex Greek letter architectures Build a cheap but effective cluster infrastructure Make queries, reports, and graphs that business demands Manage and exploit unstructured and No-SQL data sources Use tools to monitor the performance of your architecture Integrate all technologies and decide which ones replace and which ones reinforce Who This Book Is For: Developers, data architects, and data scientists looking to integrate the most successful big data open stack architecture and to choose the correct technology in every layer
Author |
: Holden Karau |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 289 |
Release |
: 2015-01-28 |
ISBN-10 |
: 9781449359058 |
ISBN-13 |
: 1449359051 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Learning Spark by : Holden Karau
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
Author |
: Srini Penchikala |
Publisher |
: Lulu.com |
Total Pages |
: 106 |
Release |
: 2018-03-13 |
ISBN-10 |
: 9781387659951 |
ISBN-13 |
: 1387659952 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Big Data Processing with Apache Spark by : Srini Penchikala
Apache Spark is a popular open-source big-data processing framework thatÕs built around speed, ease of use, and unified distributed computing architecture. Not only it supports developing applications in different languages like Java, Scala, Python, and R, itÕs also hundred times faster in memory and ten times faster even when running on disk compared to traditional data processing frameworks. Whether you are currently working on a big data project or interested in learning more about topics like machine learning, streaming data processing, and graph data analytics, this book is for you. You can learn about Apache Spark and develop Spark programs for various use cases in big data analytics using the code examples provided. This book covers all the libraries in Spark ecosystem: Spark Core, Spark SQL, Spark Streaming, Spark ML, and Spark GraphX.
Author |
: Jillur Quddus |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 233 |
Release |
: 2018-12-26 |
ISBN-10 |
: 9781789349375 |
ISBN-13 |
: 1789349370 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Machine Learning with Apache Spark Quick Start Guide by : Jillur Quddus
Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key FeaturesMake a hands-on start in the fields of Big Data, Distributed Technologies and Machine LearningLearn how to design, develop and interpret the results of common Machine Learning algorithmsUncover hidden patterns in your data in order to derive real actionable insights and business valueBook Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learnUnderstand how Spark fits in the context of the big data ecosystemUnderstand how to deploy and configure a local development environment using Apache SparkUnderstand how to design supervised and unsupervised learning modelsBuild models to perform NLP, deep learning, and cognitive services using Spark ML librariesDesign real-time machine learning pipelines in Apache SparkBecome familiar with advanced techniques for processing a large volume of data by applying machine learning algorithmsWho this book is for This book is aimed at Business Analysts, Data Analysts and Data Scientists who wish to make a hands-on start in order to take advantage of modern Big Data technologies combined with Advanced Analytics.
Author |
: Manoj Kukreja |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 480 |
Release |
: 2021-10-22 |
ISBN-10 |
: 9781801074322 |
ISBN-13 |
: 1801074321 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Data Engineering with Apache Spark, Delta Lake, and Lakehouse by : Manoj Kukreja
Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
Author |
: Jeffrey Aven |
Publisher |
: Sams Publishing |
Total Pages |
: 1353 |
Release |
: 2016-08-31 |
ISBN-10 |
: 9780134445823 |
ISBN-13 |
: 0134445821 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Apache Spark in 24 Hours, Sams Teach Yourself by : Jeffrey Aven
Apache Spark is a fast, scalable, and flexible open source distributed processing engine for big data systems and is one of the most active open source big data projects to date. In just 24 lessons of one hour or less, Sams Teach Yourself Apache Spark in 24 Hours helps you build practical Big Data solutions that leverage Spark’s amazing speed, scalability, simplicity, and versatility. This book’s straightforward, step-by-step approach shows you how to deploy, program, optimize, manage, integrate, and extend Spark–now, and for years to come. You’ll discover how to create powerful solutions encompassing cloud computing, real-time stream processing, machine learning, and more. Every lesson builds on what you’ve already learned, giving you a rock-solid foundation for real-world success. Whether you are a data analyst, data engineer, data scientist, or data steward, learning Spark will help you to advance your career or embark on a new career in the booming area of Big Data. Learn how to • Discover what Apache Spark does and how it fits into the Big Data landscape • Deploy and run Spark locally or in the cloud • Interact with Spark from the shell • Make the most of the Spark Cluster Architecture • Develop Spark applications with Scala and functional Python • Program with the Spark API, including transformations and actions • Apply practical data engineering/analysis approaches designed for Spark • Use Resilient Distributed Datasets (RDDs) for caching, persistence, and output • Optimize Spark solution performance • Use Spark with SQL (via Spark SQL) and with NoSQL (via Cassandra) • Leverage cutting-edge functional programming techniques • Extend Spark with streaming, R, and Sparkling Water • Start building Spark-based machine learning and graph-processing applications • Explore advanced messaging technologies, including Kafka • Preview and prepare for Spark’s next generation of innovations Instructions walk you through common questions, issues, and tasks; Q-and-As, Quizzes, and Exercises build and test your knowledge; "Did You Know?" tips offer insider advice and shortcuts; and "Watch Out!" alerts help you avoid pitfalls. By the time you're finished, you'll be comfortable using Apache Spark to solve a wide spectrum of Big Data problems.