Strongly Correlated Systems

Strongly Correlated Systems
Author :
Publisher : Springer
Total Pages : 329
Release :
ISBN-10 : 9783662441336
ISBN-13 : 3662441330
Rating : 4/5 (36 Downloads)

Synopsis Strongly Correlated Systems by : Adolfo Avella

The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for any other researcher in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.

Photoelectron Spectroscopy

Photoelectron Spectroscopy
Author :
Publisher : Springer Nature
Total Pages : 511
Release :
ISBN-10 : 9783030640736
ISBN-13 : 3030640736
Rating : 4/5 (36 Downloads)

Synopsis Photoelectron Spectroscopy by : Shigemasa Suga

This book presents photoelectron spectroscopy as a valuable method for studying the electronic structures of various solid materials in the bulk state, on surfaces, and at buried interfaces. This second edition introduces the advanced technique of high-resolution and high-efficiency spin- and momentum-resolved photoelectron spectroscopy using a novel momentum microscope, enabling high-precision measurements down to a length scale of some tens of nanometers. The book also deals with fundamental concepts and approaches to applying this and other complementary techniques, such as inverse photoemission, photoelectron diffraction, scanning tunneling spectroscopy, as well as photon spectroscopy based on (soft) x-ray absorption and resonance inelastic (soft) x-ray scattering. This book is the ideal tool to expand readers’ understanding of this marvelously versatile experimental method, as well as the electronic structures of metals and insulators.

Angle-resolved Photoemission Studies of Two-dimensional Electron Systems

Angle-resolved Photoemission Studies of Two-dimensional Electron Systems
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:776217024
ISBN-13 :
Rating : 4/5 (24 Downloads)

Synopsis Angle-resolved Photoemission Studies of Two-dimensional Electron Systems by : Yang Liu

This dissertation examines the electronic properties of 2D electron systems, including ultrathin metallic films grown on semiconductor substrates and graphite/graphene layers. Both systems are (quasi) two-dimensional and are of particular interest due to their technological importance. The major experimental tool is angle-resolved photoemission spectroscopy, which can directly measure the spectral function of the quasiparticle. The study of ultrathin metallic films focuses on the substrate effect on the electronic structure of the film. Thin metallic films can support quantum well states, which are essentially electronic standing waves. Our work on Ag films grown on Ge(111) demonstrates that the incommensurate interface potential results in strong modifications to quantum well states. The observed electronic interference structures are attributable to the mixing of electronic standing waves by the Ag-Ge interface potential. The complex Fermi surface, as a result of this interface scattering, can affect the electronic transport properties. An even stronger modification of quantum well states can be observed when the metal films are grown on stepped substrates. More specifically, our study of corrugated Ag/Pb films grown on Si(557)-Au surface reveals multiple sets of quantum well states that are centered at the Brillouin zone boundaries corresponding to the step modulation. This indicates that the valence electrons form coherent grating cavity modes which are defined by the corrugation geometry. Graphitic materials, made of sheets of carbon atomic layers, have unusual electronic structures known as Dirac cones. Our photoemission measurements of graphite/graphene layers reveal unexpected gaps at normal emission, one at ~67 meV and another much weaker one at ~150 meV. The major gap features persist up to room temperature, and diminish with increasing emission angles. We show that these gaps arise from electronic coupling to out-of-plane and in-plane vibrational modes at the point, respectively, in accordance with conservation laws and selection rules governed by quantum mechanics. Our study suggests a new approach for characterizing phonons and electron-phonon coupling in solids.

Physics Of Heavy Fermions: Heavy Fermions And Strongly Correlated Electrons Systems

Physics Of Heavy Fermions: Heavy Fermions And Strongly Correlated Electrons Systems
Author :
Publisher : World Scientific
Total Pages : 336
Release :
ISBN-10 : 9789813232211
ISBN-13 : 9813232218
Rating : 4/5 (11 Downloads)

Synopsis Physics Of Heavy Fermions: Heavy Fermions And Strongly Correlated Electrons Systems by : Yoshichika Onuki

A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challenging problem in solid state and condensed matter physics. This book will tackle all these topics and more.

Photo-Excited Processes, Diagnostics and Applications

Photo-Excited Processes, Diagnostics and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 380
Release :
ISBN-10 : 9781402026102
ISBN-13 : 1402026102
Rating : 4/5 (02 Downloads)

Synopsis Photo-Excited Processes, Diagnostics and Applications by : A. Peled

Photo-Excited Processes, Diagnostics and Applications covers the area of photo-excitation and processing of materials by photons from the basic principles and theories to applications, from IR to x-rays, from gas phase to liquid and solid phases. The various chapters give a wide spectral view of this developing field. Twelve leading groups worldwide set down to write this book during the past two years which include the most updated techniques used in their laboratories for investigating photo-excited processes and new applications. This book will be useful to scientists and engineers who have a strong interest in photo-assisted processes development for microelectronics and photonics.

Electron and Ion Spectroscopy of Solids

Electron and Ion Spectroscopy of Solids
Author :
Publisher : Springer Science & Business Media
Total Pages : 485
Release :
ISBN-10 : 9781468428179
ISBN-13 : 1468428179
Rating : 4/5 (79 Downloads)

Synopsis Electron and Ion Spectroscopy of Solids by : L. Fiermans

Surface physics and chemistry have in recent years become one of the most active fields in solid state research. A number of techniques have been developed, and both the experimental aspect and the correlated theory are evolving at an extremely fast rate. Electron and ion spectroscopy are of major importance in this development. In this volume, which contains edited and extended versions of eight sets of lectures given at the NATO Advanced Study Institute held at Ghent, Belgium, from August 29 to September 9, 1977, a re view of the state of the art in these fields is given from both an experimental and a theoretical point of view. Electron emission techniques such as UPS (ultraviolet photoemission spectroscopy), XPS (x-ray photoemission spectroscopy), and AES (Auger electron spectroscopy) constitute the major part of this volume, reflecting the fact that they continue to be the most widely applied surface techniques. Recent developments in the application of synchrotron radiation to angle-resolved photoelectron spectroscopy are extensively covered, from an experimental point of view by Prof. W. E. Spicer (Stanford University, U.S.A.) and from a theoretical point of view by Dr. A. Liebsch (Kernforschungsanlage Julich, Germany). Emphasis is put on the study of energy bands in layered structures, and on chemisorption on well-defined surfaces. Chemisorption and catalysis on metals is treated in detail by Prof. G. Ertl (Universitat Munchen, Germany). This chapter contains a review of the application of the different surface techniques to specific surface systems.