Angiogenesis In Vitro Systems
Download Angiogenesis In Vitro Systems full books in PDF, epub, and Kindle. Read online free Angiogenesis In Vitro Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Carolyn A. Staton |
Publisher |
: John Wiley & Sons |
Total Pages |
: 410 |
Release |
: 2007-01-11 |
ISBN-10 |
: 9780470029343 |
ISBN-13 |
: 047002934X |
Rating |
: 4/5 (43 Downloads) |
Synopsis Angiogenesis Assays by : Carolyn A. Staton
Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.
Author |
: Domenico Ribatti |
Publisher |
: Academic Press |
Total Pages |
: 130 |
Release |
: 2017-08-18 |
ISBN-10 |
: 9780128140215 |
ISBN-13 |
: 0128140216 |
Rating |
: 4/5 (15 Downloads) |
Synopsis In Vivo Models to Study Angiogenesis by : Domenico Ribatti
In Vivo Models to Study Angiogenesis provides the latest information and an overview of the most common assays for studying angiogenesis in vivo. Under physiological conditions, angiogenesis is tightly controlled, whereas increased production of angiogenic stimuli and/or reduced production of angiogenic inhibitors leads to abnormal neovascularization, such as occurs in cancer, chronic inflammatory disease, diabetic retinopathy, macular degeneration and cardiovascular disorders. Several genetic and epigenetic mechanisms are involved in the early development of the vascular system. This book presents the latest information from the extensive literature and research available. Evidence is now emerging that blood vessels themselves have the ability to provide instructive regulatory signals to surrounding non-vascular target cells during organ development. Thus, endothelial cell signaling is currently believed to promote fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodeling. - Provides information on the most common assays to study angiogenesis in vivo - Presents an ideal reference for those interested in angiogenesis as a normal and vital process in growth and development - Covers wound healing, the formation of granulation tissue, and the transition of tumors from benign to malignant
Author |
: David A. Cheresh |
Publisher |
: Academic Press |
Total Pages |
: 403 |
Release |
: 2011-09-02 |
ISBN-10 |
: 9780080921679 |
ISBN-13 |
: 0080921671 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Angiogenesis: In Vitro Systems by : David A. Cheresh
Angiogenesis is the growth of new blood vessels and is an important natural process in the body. A healthy body maintains a perfect balance of angiogenesis modulators. In many serious disease states, however, the body loses control over antiogenesis. Diseases that are angiogensis-dependent result when blood vessels either grow excessively or insufficiently. - Tried-and-tested techniques written by researchers that developed them, used them, and brought them to fruition - Provides the "builder's manual" for essential techniques--a one-stop shop that eliminates needless searching among untested techniques - Includes step-by-step methods for understanding the cell and molecular basis of wound healing, vascular integrin signaling, mechanical signaling in blood vessels, and vascular proteomics
Author |
: Thomas H. Adair |
Publisher |
: Morgan & Claypool Publishers |
Total Pages |
: 85 |
Release |
: 2011 |
ISBN-10 |
: 9781615043309 |
ISBN-13 |
: 1615043306 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Angiogenesis by : Thomas H. Adair
Angiogenesis is the growth of blood vessels from the existing vasculature. The field of angiogenesis has grown enormously in the past 30 years, with only 40 papers published in 1980 and nearly 6000 in 2010. Why has there been this explosive growth in angiogenesis research? Angiogenic therapies provide a potential to conquer cancer, heart diseases, and more than 70 of life's most threatening medical conditions. The lives of at least 1 billion people worldwide could be improved with angiogenic therapy, according to the Angiogenesis Foundation. In this little book, we provide a simple approach to understand the essential elements of the angiogenic process, we critique the most powerful angiogenesis assays that are used to discover proangiogenic and antiangiogenic substances, and we provide an in-depth physiological perspective on how angiogenesis is regulated in normal, healthy tissues of the human body. All tissues of the body require a continuous supply of oxygen to burn metabolic substrates that are needed for energy. Oxygen is conducted to these tissues by blood capillaries: more capillaries can improve tissue oxygenation and thus enhance energy production; fewer capillaries can lead to hypoxia and even anoxia in the tissues. This means that angiogenic therapies designed to control the growth and regression of blood capillaries can be used to improve the survival of poorly perfused tissues that are essential to the body (heart, brain, skeletal muscle, etc.) and to rid the body of unwanted tissues (tumors). Table of Contents: Overview of Angiogenesis / Angiogenesis Assays / Regulation: Metabolic Factors / Regulation: Mechanical Factors / Glossary / References / Author Biographies
Author |
: D. Neil Granger |
Publisher |
: Morgan & Claypool Publishers |
Total Pages |
: 99 |
Release |
: 2010 |
ISBN-10 |
: 9781615041657 |
ISBN-13 |
: 1615041656 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Inflammation and the Microcirculation by : D. Neil Granger
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
Author |
: Subhas C. Kundu |
Publisher |
: Elsevier |
Total Pages |
: 773 |
Release |
: 2020-08-22 |
ISBN-10 |
: 9780128181294 |
ISBN-13 |
: 012818129X |
Rating |
: 4/5 (94 Downloads) |
Synopsis Biomaterials for 3D Tumor Modeling by : Subhas C. Kundu
Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. - Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles - Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types - Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery
Author |
: Stewart Martin |
Publisher |
: Humana Press |
Total Pages |
: 358 |
Release |
: 2008-12-04 |
ISBN-10 |
: 1588299074 |
ISBN-13 |
: 9781588299079 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Angiogenesis Protocols by : Stewart Martin
As experimentation and clinical trials with first generation anti-angiogenic agents have yielded results and our understanding of the biology and physiology of blood and lymphatic vessels has increased, a new angiogenesis volume swiftly became a necessity. Angiogenesis Protocols, Second Edition remains true to its original vision of providing a single source for angiogenesis researchers, irrespective of levels of resource and expertise, by collecting a range of methods for cell isolation and assessing angiogenesis in vivo or in vitro. This information, however, is expanded to include chapters on circulating endothelial progenitor cells, angiogenic signalling pathways, imaging of angiogenesis, and measurement of tissue blood flow. Written in the Methods in Molecular BiologyTM series format, the chapters provide step-by-step laboratory protocols, lists of necessary materials and reagents, and a Notes section, which details tips on troubleshooting and avoiding known pitfalls. Extensive and cutting-edge, Angiogenesis Protocols, Second Edition is not only a practical handbook for key techniques, but also an informative and enjoyable read for all those interested, no matter how directly, in angiogenesis.
Author |
: Damir Janigro |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 555 |
Release |
: 2008-01-23 |
ISBN-10 |
: 9781597450218 |
ISBN-13 |
: 1597450219 |
Rating |
: 4/5 (18 Downloads) |
Synopsis The Cell Cycle in the Central Nervous System by : Damir Janigro
Cell Cycle in the Central Nervous System overviews the changes in cell cycle as they relate to prenatal and post natal brain development, progression to neurological disease or tumor formation.Topics covered range from the cell cycle during the prenatal development of the mammalian central nervous system to future directions in postnatal neurogenesis through gene transfer, electrical stimulation, and stem cell introduction. Additional chapters examine the postnatal development of neurons and glia, the regulation of cell cycle in glia, and how that regulation may fail in pretumor conditions or following a nonneoplastic CNS response to injury. Highlights include treatments of the effects of deep brain stimulation on brain development and repair; the connection between the electrophysiological properties of neuroglia, cell cycle, and tumor progression; and the varied immunological responses and their regulation by cell cycle.
Author |
: |
Publisher |
: |
Total Pages |
: 0 |
Release |
: 2002 |
ISBN-10 |
: 0815332181 |
ISBN-13 |
: 9780815332183 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Molecular Biology of the Cell by :
Author |
: I.D. Goldberg |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 520 |
Release |
: 1997 |
ISBN-10 |
: 3764353090 |
ISBN-13 |
: 9783764353094 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Regulation of Angiogenesis by : I.D. Goldberg
thrombospondin-l may be encoded by a tumor suppressor gene. Dr. O'Reilly discusses angiostatin, an exciting recently discovered factor derived from the fibrinolytic proenzyme plasminogen that inhibits tumor angiogenesis, primary tumor growth, and formation of metastases. In addition to the soluble class of angiogenesis-regulatory factors discussed above, interactions of endothelial cells with components of the extracellular matrix and with other cell types are critical for proper formation of vessels. Drs. Grant and Kleinman discuss the role of laminin and other matrix molecules in regulation of capillary formation. Dr. van Hinsbergh and colleagues describe the role of fibrin and the fibrinolytic system in angiogenesis associated with wound repair. Cell surface mole cules that interact with the extracellular matrix have been implicated in the regulation of angiogenesis. Dr. Varner discusses some exciting new studies on the roles of specific vascular cell integrins (a /33 and a /3s) in mediating v v tumor angiogenesis and angiogenesis associated with wound healing. The pericyte, a vascular smooth muscle-like cell, exerts a powerful regulatory effect during the later stages of angiogenesis in which mature capillaries are formed. These mechanisms are discussed by Drs. Hirschi and D' Amore. With all the recent progress in the molecular biology of angiogenesis, the contribution of microenvironmental conditions such as hypoxia and pH to angiogenesis is often ignored. Drs. Rockwell and Knisely review this area of investigation and present studies of experimental tumor models.