Analyzing Multivariate Data

Analyzing Multivariate Data
Author :
Publisher : Duxbury Press
Total Pages : 556
Release :
ISBN-10 : 0534349749
ISBN-13 : 9780534349745
Rating : 4/5 (49 Downloads)

Synopsis Analyzing Multivariate Data by : James M. Lattin

Offering the latest teaching and practice of applied multivariate statistics, this text is perfect for students who need an applied introduction to the subject. Lattin, Carroll, and Green have created a text that speaks to the needs of applied students who have advanced beyond the beginning level, but are not advanced statistics majors. The text provides a three-part structure. First, the authors begin each major topic by developing students' statistical intuition through applications. Then, they providing illustrative examples for support. Finally, for those courses where it will be valuable, they describe relevant mathematical underpinnings with vectors and matrix algebra. Additionally, each chapter follows a standard format. This format begins by discussing a general set of research objectives, followed by illustrative examples of problems in different areas. Then it provides an explanation of how each method works, followed by a sample problem, application of the technique, and interpretation of results.

Multivariate Data Analysis

Multivariate Data Analysis
Author :
Publisher : Pearson Higher Ed
Total Pages : 816
Release :
ISBN-10 : 9780133792683
ISBN-13 : 0133792684
Rating : 4/5 (83 Downloads)

Synopsis Multivariate Data Analysis by : Joseph Hair

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For graduate and upper-level undergraduate marketing research courses. For over 30 years, Multivariate Data Analysis has provided readers with the information they need to understand and apply multivariate data analysis. Hair et. al provides an applications-oriented introduction to multivariate analysis for the non-statistician. By reducing heavy statistical research into fundamental concepts, the text explains to readers how to understand and make use of the results of specific statistical techniques. In this Seventh Edition, the organization of the chapters has been greatly simplified. New chapters have been added on structural equations modeling, and all sections have been updated to reflect advances in technology, capability, and mathematical techniques.

Making Sense of Multivariate Data Analysis

Making Sense of Multivariate Data Analysis
Author :
Publisher : SAGE
Total Pages : 256
Release :
ISBN-10 : 1412904013
ISBN-13 : 9781412904018
Rating : 4/5 (13 Downloads)

Synopsis Making Sense of Multivariate Data Analysis by : John Spicer

A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.

An Introduction to Applied Multivariate Analysis with R

An Introduction to Applied Multivariate Analysis with R
Author :
Publisher : Springer Science & Business Media
Total Pages : 284
Release :
ISBN-10 : 9781441996503
ISBN-13 : 1441996508
Rating : 4/5 (03 Downloads)

Synopsis An Introduction to Applied Multivariate Analysis with R by : Brian Everitt

The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

Handbook of Univariate and Multivariate Data Analysis and Interpretation with SPSS

Handbook of Univariate and Multivariate Data Analysis and Interpretation with SPSS
Author :
Publisher : CRC Press
Total Pages : 426
Release :
ISBN-10 : 9781420011111
ISBN-13 : 1420011111
Rating : 4/5 (11 Downloads)

Synopsis Handbook of Univariate and Multivariate Data Analysis and Interpretation with SPSS by : Robert Ho

Many statistics texts tend to focus more on the theory and mathematics underlying statistical tests than on their applications and interpretation. This can leave readers with little understanding of how to apply statistical tests or how to interpret their findings. While the SPSS statistical software has done much to alleviate the frustrations of s

Practical Multivariate Analysis

Practical Multivariate Analysis
Author :
Publisher : CRC Press
Total Pages : 418
Release :
ISBN-10 : 9781351788915
ISBN-13 : 1351788914
Rating : 4/5 (15 Downloads)

Synopsis Practical Multivariate Analysis by : Abdelmonem Afifi

This is the sixth edition of a popular textbook on multivariate analysis. Well-regarded for its practical and accessible approach, with excellent examples and good guidance on computing, the book is particularly popular for teaching outside statistics, i.e. in epidemiology, social science, business, etc. The sixth edition has been updated with a new chapter on data visualization, a distinction made between exploratory and confirmatory analyses and a new section on generalized estimating equations and many new updates throughout. This new edition will enable the book to continue as one of the leading textbooks in the area, particularly for non-statisticians. Key Features: Provides a comprehensive, practical and accessible introduction to multivariate analysis. Keeps mathematical details to a minimum, so particularly geared toward a non-statistical audience. Includes lots of detailed worked examples, guidance on computing, and exercises. Updated with a new chapter on data visualization.

Introduction to Multivariate Statistical Analysis in Chemometrics

Introduction to Multivariate Statistical Analysis in Chemometrics
Author :
Publisher : CRC Press
Total Pages : 328
Release :
ISBN-10 : 9781420059496
ISBN-13 : 1420059491
Rating : 4/5 (96 Downloads)

Synopsis Introduction to Multivariate Statistical Analysis in Chemometrics by : Kurt Varmuza

Using formal descriptions, graphical illustrations, practical examples, and R software tools, Introduction to Multivariate Statistical Analysis in Chemometrics presents simple yet thorough explanations of the most important multivariate statistical methods for analyzing chemical data. It includes discussions of various statistical methods, such as

Analysis of Multivariate Survival Data

Analysis of Multivariate Survival Data
Author :
Publisher : Springer Science & Business Media
Total Pages : 559
Release :
ISBN-10 : 9781461213048
ISBN-13 : 1461213045
Rating : 4/5 (48 Downloads)

Synopsis Analysis of Multivariate Survival Data by : Philip Hougaard

Survival data or more general time-to-event data occur in many areas, including medicine, biology, engineering, economics, and demography, but previously standard methods have requested that all time variables are univariate and independent. This book extends the field by allowing for multivariate times. As the field is rather new, the concepts and the possible types of data are described in detail. Four different approaches to the analysis of such data are presented from an applied point of view.

Multivariate Analysis Techniques in Social Science Research

Multivariate Analysis Techniques in Social Science Research
Author :
Publisher : SAGE
Total Pages : 430
Release :
ISBN-10 : 076195273X
ISBN-13 : 9780761952732
Rating : 4/5 (3X Downloads)

Synopsis Multivariate Analysis Techniques in Social Science Research by : Jacques Tacq

Tacq demonstrates how a researcher comes to the appropriate choice of a technique for multivariate analysis. He examines a wide selection of topics from a range of disciplines including sociology, psychology, economics, and political science.

Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data
Author :
Publisher : Fundacion BBVA
Total Pages : 336
Release :
ISBN-10 : 9788492937509
ISBN-13 : 8492937505
Rating : 4/5 (09 Downloads)

Synopsis Multivariate Analysis of Ecological Data by : Michael Greenacre

La diversidad biológica es fruto de la interacción entre numerosas especies, ya sean marinas, vegetales o animales, a la par que de los muchos factores limitantes que caracterizan el medio que habitan. El análisis multivariante utiliza las relaciones entre diferentes variables para ordenar los objetos de estudio según sus propiedades colectivas y luego clasificarlos; es decir, agrupar especies o ecosistemas en distintas clases compuestas cada una por entidades con propiedades parecidas. El fin último es relacionar la variabilidad biológica observada con las correspondientes características medioambientales. Multivariate Analysis of Ecological Data explica de manera completa y estructurada cómo analizar e interpretar los datos ecológicos observados sobre múltiples variables, tanto biológicos como medioambientales. Tras una introducción general a los datos ecológicos multivariantes y la metodología estadística, se abordan en capítulos específicos, métodos como aglomeración (clustering), regresión, biplots, escalado multidimensional, análisis de correspondencias (simple y canónico) y análisis log-ratio, con atención también a sus problemas de modelado y aspectos inferenciales. El libro plantea una serie de aplicaciones a datos reales derivados de investigaciones ecológicas, además de dos casos detallados que llevan al lector a apreciar los retos de análisis, interpretación y comunicación inherentes a los estudios a gran escala y los diseños complejos.