Analytic And Elementary Number Theory
Download Analytic And Elementary Number Theory full books in PDF, epub, and Kindle. Read online free Analytic And Elementary Number Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Krishnaswami Alladi |
Publisher |
: Springer |
Total Pages |
: 289 |
Release |
: 2013-12-21 |
ISBN-10 |
: 9781475745078 |
ISBN-13 |
: 1475745079 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Analytic and Elementary Number Theory by : Krishnaswami Alladi
This volume contains a collection of papers in Analytic and Elementary Number Theory in memory of Professor Paul Erdös, one of the greatest mathematicians of this century. Written by many leading researchers, the papers deal with the most recent advances in a wide variety of topics, including arithmetical functions, prime numbers, the Riemann zeta function, probabilistic number theory, properties of integer sequences, modular forms, partitions, and q-series. Audience: Researchers and students of number theory, analysis, combinatorics and modular forms will find this volume to be stimulating.
Author |
: P. T. Bateman |
Publisher |
: World Scientific |
Total Pages |
: 378 |
Release |
: 2004 |
ISBN-10 |
: 9812560807 |
ISBN-13 |
: 9789812560803 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Analytic Number Theory by : P. T. Bateman
This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (?elementary?) and complex variable (?analytic?) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at http: //www.math.uiuc.edu/ diamond/
Author |
: Tom M. Apostol |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 352 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9781475755794 |
ISBN-13 |
: 1475755791 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Introduction to Analytic Number Theory by : Tom M. Apostol
"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS
Author |
: Marius Overholt |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 394 |
Release |
: 2014-12-30 |
ISBN-10 |
: 9781470417062 |
ISBN-13 |
: 1470417065 |
Rating |
: 4/5 (62 Downloads) |
Synopsis A Course in Analytic Number Theory by : Marius Overholt
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
Author |
: Paul Pollack |
Publisher |
: Springer Nature |
Total Pages |
: 191 |
Release |
: 2021-02-08 |
ISBN-10 |
: 9783030650773 |
ISBN-13 |
: 3030650774 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Steps into Analytic Number Theory by : Paul Pollack
This problem book gathers together 15 problem sets on analytic number theory that can be profitably approached by anyone from advanced high school students to those pursuing graduate studies. It emerged from a 5-week course taught by the first author as part of the 2019 Ross/Asia Mathematics Program held from July 7 to August 9 in Zhenjiang, China. While it is recommended that the reader has a solid background in mathematical problem solving (as from training for mathematical contests), no possession of advanced subject-matter knowledge is assumed. Most of the solutions require nothing more than elementary number theory and a good grasp of calculus. Problems touch at key topics like the value-distribution of arithmetic functions, the distribution of prime numbers, the distribution of squares and nonsquares modulo a prime number, Dirichlet's theorem on primes in arithmetic progressions, and more. This book is suitable for any student with a special interest in developing problem-solving skills in analytic number theory. It will be an invaluable aid to lecturers and students as a supplementary text for introductory Analytic Number Theory courses at both the undergraduate and graduate level.
Author |
: William Stein |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 173 |
Release |
: 2008-10-28 |
ISBN-10 |
: 9780387855257 |
ISBN-13 |
: 0387855254 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Elementary Number Theory: Primes, Congruences, and Secrets by : William Stein
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
Author |
: Gareth A. Jones |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 305 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781447106135 |
ISBN-13 |
: 144710613X |
Rating |
: 4/5 (35 Downloads) |
Synopsis Elementary Number Theory by : Gareth A. Jones
An undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.
Author |
: Jeffrey Stopple |
Publisher |
: Cambridge University Press |
Total Pages |
: 404 |
Release |
: 2003-06-23 |
ISBN-10 |
: 0521012538 |
ISBN-13 |
: 9780521012539 |
Rating |
: 4/5 (38 Downloads) |
Synopsis A Primer of Analytic Number Theory by : Jeffrey Stopple
An undergraduate-level 2003 introduction whose only prerequisite is a standard calculus course.
Author |
: Edmund Hlawka |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 247 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642753060 |
ISBN-13 |
: 364275306X |
Rating |
: 4/5 (60 Downloads) |
Synopsis Geometric and Analytic Number Theory by : Edmund Hlawka
In the English edition, the chapter on the Geometry of Numbers has been enlarged to include the important findings of H. Lenstraj furthermore, tried and tested examples and exercises have been included. The translator, Prof. Charles Thomas, has solved the difficult problem of the German text into English in an admirable way. He deserves transferring our 'Unreserved praise and special thailks. Finally, we would like to express our gratitude to Springer-Verlag, for their commitment to the publication of this English edition, and for the special care taken in its production. Vienna, March 1991 E. Hlawka J. SchoiBengeier R. Taschner Preface to the German Edition We have set ourselves two aims with the present book on number theory. On the one hand for a reader who has studied elementary number theory, and who has knowledge of analytic geometry, differential and integral calculus, together with the elements of complex variable theory, we wish to introduce basic results from the areas of the geometry of numbers, diophantine ap proximation, prime number theory, and the asymptotic calculation of number theoretic functions. However on the other hand for the student who has al ready studied analytic number theory, we also present results and principles of proof, which until now have barely if at all appeared in text books.
Author |
: Melvyn B. Nathanson |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 518 |
Release |
: 2008-01-11 |
ISBN-10 |
: 9780387227382 |
ISBN-13 |
: 0387227385 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Elementary Methods in Number Theory by : Melvyn B. Nathanson
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.