Gaussian Hilbert Spaces

Gaussian Hilbert Spaces
Author :
Publisher : Cambridge University Press
Total Pages : 358
Release :
ISBN-10 : 9780521561280
ISBN-13 : 0521561280
Rating : 4/5 (80 Downloads)

Synopsis Gaussian Hilbert Spaces by : Svante Janson

This book treats the very special and fundamental mathematical properties that hold for a family of Gaussian (or normal) random variables. Such random variables have many applications in probability theory, other parts of mathematics, statistics and theoretical physics. The emphasis throughout this book is on the mathematical structures common to all these applications. This will be an excellent resource for all researchers whose work involves random variables.

Analysis On Gaussian Spaces

Analysis On Gaussian Spaces
Author :
Publisher : World Scientific
Total Pages : 483
Release :
ISBN-10 : 9789813142190
ISBN-13 : 9813142197
Rating : 4/5 (90 Downloads)

Synopsis Analysis On Gaussian Spaces by : Yaozhong Hu

'Written by a well-known expert in fractional stochastic calculus, this book offers a comprehensive overview of Gaussian analysis, with particular emphasis on nonlinear Gaussian functionals. In addition, it covers some topics that are not frequently encountered in other treatments, such as Littlewood-Paley-Stein, etc. This coverage makes the book a valuable addition to the literature. Many results presented in this book were hitherto available only in the research literature in the form of research papers by the author and his co-authors.'Mathematical Reviews ClippingsAnalysis of functions on the finite dimensional Euclidean space with respect to the Lebesgue measure is fundamental in mathematics. The extension to infinite dimension is a great challenge due to the lack of Lebesgue measure on infinite dimensional space. Instead the most popular measure used in infinite dimensional space is the Gaussian measure, which has been unified under the terminology of 'abstract Wiener space'.Out of the large amount of work on this topic, this book presents some fundamental results plus recent progress. We shall present some results on the Gaussian space itself such as the Brunn-Minkowski inequality, Small ball estimates, large tail estimates. The majority part of this book is devoted to the analysis of nonlinear functions on the Gaussian space. Derivative, Sobolev spaces are introduced, while the famous Poincaré inequality, logarithmic inequality, hypercontractive inequality, Meyer's inequality, Littlewood-Paley-Stein-Meyer theory are given in details.This book includes some basic material that cannot be found elsewhere that the author believes should be an integral part of the subject. For example, the book includes some interesting and important inequalities, the Littlewood-Paley-Stein-Meyer theory, and the Hörmander theorem. The book also includes some recent progress achieved by the author and collaborators on density convergence, numerical solutions, local times.

Gaussian Capacity Analysis

Gaussian Capacity Analysis
Author :
Publisher : Springer
Total Pages : 115
Release :
ISBN-10 : 9783319950402
ISBN-13 : 3319950401
Rating : 4/5 (02 Downloads)

Synopsis Gaussian Capacity Analysis by : Liguang Liu

This monograph develops the Gaussian functional capacity theory with applications to restricting the Gaussian Campanato/Sobolev/BV space. Included in the text is a new geometric characterization of the Gaussian 1-capacity and the Gaussian Poincaré 1-inequality. Applications to function spaces and geometric measures are also presented. This book will be of use to researchers who specialize in potential theory, elliptic differential equations, functional analysis, probability, and geometric measure theory.

Gaussian Measures in Banach Spaces

Gaussian Measures in Banach Spaces
Author :
Publisher : Springer
Total Pages : 230
Release :
ISBN-10 : 9783540375081
ISBN-13 : 3540375082
Rating : 4/5 (81 Downloads)

Synopsis Gaussian Measures in Banach Spaces by : H.-H. Kuo

Gaussian Harmonic Analysis

Gaussian Harmonic Analysis
Author :
Publisher : Springer
Total Pages : 501
Release :
ISBN-10 : 9783030055974
ISBN-13 : 3030055973
Rating : 4/5 (74 Downloads)

Synopsis Gaussian Harmonic Analysis by : Wilfredo Urbina-Romero

Authored by a ranking authority in Gaussian harmonic analysis, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: harmonic analysis and probability. The book is intended for a very diverse audience, from graduate students all the way to researchers working in a broad spectrum of areas in analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of real analysis as well as with classical harmonic analysis, including Calderón-Zygmund theory; also some knowledge of basic orthogonal polynomials theory would be convenient. The monograph develops the main topics of classical harmonic analysis (semigroups, covering lemmas, maximal functions, Littlewood-Paley functions, spectral multipliers, fractional integrals and fractional derivatives, singular integrals) with respect to the Gaussian measure. The text provide an updated exposition, as self-contained as possible, of all the topics in Gaussian harmonic analysis that up to now are mostly scattered in research papers and sections of books; also an exhaustive bibliography for further reading. Each chapter ends with a section of notes and further results where connections between Gaussian harmonic analysis and other connected fields, points of view and alternative techniques are given. Mathematicians and researchers in several areas will find the breadth and depth of the treatment of the subject highly useful.

An Introduction to Infinite-Dimensional Analysis

An Introduction to Infinite-Dimensional Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 217
Release :
ISBN-10 : 9783540290216
ISBN-13 : 3540290214
Rating : 4/5 (16 Downloads)

Synopsis An Introduction to Infinite-Dimensional Analysis by : Giuseppe Da Prato

Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning
Author :
Publisher : MIT Press
Total Pages : 266
Release :
ISBN-10 : 9780262182539
ISBN-13 : 026218253X
Rating : 4/5 (39 Downloads)

Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen

A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

White Noise

White Noise
Author :
Publisher : Springer Science & Business Media
Total Pages : 528
Release :
ISBN-10 : 9789401736800
ISBN-13 : 9401736804
Rating : 4/5 (00 Downloads)

Synopsis White Noise by : Takeyuki Hida

Many areas of applied mathematics call for an efficient calculus in infinite dimensions. This is most apparent in quantum physics and in all disciplines of science which describe natural phenomena by equations involving stochasticity. With this monograph we intend to provide a framework for analysis in infinite dimensions which is flexible enough to be applicable in many areas, and which on the other hand is intuitive and efficient. Whether or not we achieved our aim must be left to the judgment of the reader. This book treats the theory and applications of analysis and functional analysis in infinite dimensions based on white noise. By white noise we mean the generalized Gaussian process which is (informally) given by the time derivative of the Wiener process, i.e., by the velocity of Brownian mdtion. Therefore, in essence we present analysis on a Gaussian space, and applications to various areas of sClence. Calculus, analysis, and functional analysis in infinite dimensions (or dimension-free formulations of these parts of classical mathematics) have a long history. Early examples can be found in the works of Dirichlet, Euler, Hamilton, Lagrange, and Riemann on variational problems. At the beginning of this century, Frechet, Gateaux and Volterra made essential contributions to the calculus of functions over infinite dimensional spaces. The important and inspiring work of Wiener and Levy followed during the first half of this century. Moreover, the articles and books of Wiener and Levy had a view towards probability theory.

Stochastic Analysis of Mixed Fractional Gaussian Processes

Stochastic Analysis of Mixed Fractional Gaussian Processes
Author :
Publisher : Elsevier
Total Pages : 212
Release :
ISBN-10 : 9780081023631
ISBN-13 : 0081023634
Rating : 4/5 (31 Downloads)

Synopsis Stochastic Analysis of Mixed Fractional Gaussian Processes by : Yuliya Mishura

Stochastic Analysis of Mixed Fractional Gaussian Processes presents the main tools necessary to characterize Gaussian processes. The book focuses on the particular case of the linear combination of independent fractional and sub-fractional Brownian motions with different Hurst indices. Stochastic integration with respect to these processes is considered, as is the study of the existence and uniqueness of solutions of related SDE's. Applications in finance and statistics are also explored, with each chapter supplying a number of exercises to illustrate key concepts. - Presents both mixed fractional and sub-fractional Brownian motions - Provides an accessible description for mixed fractional gaussian processes that is ideal for Master's and PhD students - Includes different Hurst indices

Probability in Banach Spaces

Probability in Banach Spaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 493
Release :
ISBN-10 : 9783642202124
ISBN-13 : 3642202128
Rating : 4/5 (24 Downloads)

Synopsis Probability in Banach Spaces by : Michel Ledoux

Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.