An Invitation to Pursuit-Evasion Games and Graph Theory

An Invitation to Pursuit-Evasion Games and Graph Theory
Author :
Publisher : American Mathematical Society
Total Pages : 254
Release :
ISBN-10 : 9781470467630
ISBN-13 : 1470467631
Rating : 4/5 (30 Downloads)

Synopsis An Invitation to Pursuit-Evasion Games and Graph Theory by : Anthony Bonato

Graphs measure interactions between objects such as friendship links on Twitter, transactions between Bitcoin users, and the flow of energy in a food chain. While graphs statically represent interacting systems, they may also be used to model dynamic interactions. For example, imagine an invisible evader loose on a graph, leaving only behind breadcrumb clues to their whereabouts. You set out with pursuers of your own, seeking out the evader's location. Would you be able to detect their location? If so, then how many resources are needed for detection, and how fast can that happen? These basic-seeming questions point towards the broad conceptual framework of pursuit-evasion games played on graphs. Central to pursuit-evasion games on graphs is the idea of optimizing certain parameters, whether they are the cop number, burning number, or localization number, for example. This book would be excellent for a second course in graph theory at the undergraduate or graduate level. It surveys different areas in graph searching and highlights many fascinating topics intersecting classical graph theory, geometry, and combinatorial designs. Each chapter ends with approximately twenty exercises and five larger scale projects.

Graph-Theoretic Concepts in Computer Science

Graph-Theoretic Concepts in Computer Science
Author :
Publisher : Springer Nature
Total Pages : 491
Release :
ISBN-10 : 9783031433801
ISBN-13 : 3031433807
Rating : 4/5 (01 Downloads)

Synopsis Graph-Theoretic Concepts in Computer Science by : Daniël Paulusma

This volume constitutes the thoroughly refereed proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2023. The 33 full papers presented in this volume were carefully reviewed and selected from a total of 116 submissions. The WG 2022 workshop aims to merge theory and practice by demonstrating how concepts from graph theory can be applied to various areas in computer science, or by extracting new graph theoretic problems from applications.

Glimpses of Soliton Theory

Glimpses of Soliton Theory
Author :
Publisher : American Mathematical Society
Total Pages : 366
Release :
ISBN-10 : 9781470472627
ISBN-13 : 1470472627
Rating : 4/5 (27 Downloads)

Synopsis Glimpses of Soliton Theory by : Alex Kasman

This book challenges and intrigues from beginning to end. It would be a treat to use for a capstone course or senior seminar. —William J. Satzer, MAA Reviews on Glimpses of Soliton Theory (First Edition) Solitons are nonlinear waves which behave like interacting particles. When first proposed in the 19th century, leading mathematical physicists denied that such a thing could exist. Now they are regularly observed in nature, shedding light on phenomena like rogue waves and DNA transcription. Solitons of light are even used by engineers for data transmission and optical switches. Furthermore, unlike most nonlinear partial differential equations, soliton equations have the remarkable property of being exactly solvable. Explicit solutions to those equations provide a rare window into what is possible in the realm of nonlinearity. Glimpses of Soliton Theory reveals the hidden connections discovered over the last half-century that explain the existence of these mysterious mathematical objects. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra, the book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass $wp$-functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Hierarchy, and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make the subject accessible to undergraduates, numerous worked examples and thought-provoking exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of Mathematica® to facilitate computation and animate solutions. The second edition refines the exposition in every chapter, adds more homework exercises and projects, updates references, and includes new examples involving non-commutative integrable systems. Moreover, the chapter on KdV multisolitons has been greatly expanded with new theorems providing a thorough analysis of their behavior and decomposition.

Modelling and Mining Networks

Modelling and Mining Networks
Author :
Publisher : Springer Nature
Total Pages : 194
Release :
ISBN-10 : 9783031592058
ISBN-13 : 3031592050
Rating : 4/5 (58 Downloads)

Synopsis Modelling and Mining Networks by : Megan Dewar

Knots, Links and Their Invariants

Knots, Links and Their Invariants
Author :
Publisher : American Mathematical Society
Total Pages : 149
Release :
ISBN-10 : 9781470471514
ISBN-13 : 1470471515
Rating : 4/5 (14 Downloads)

Synopsis Knots, Links and Their Invariants by : A. B. Sossinsky

This book is an elementary introduction to knot theory. Unlike many other books on knot theory, this book has practically no prerequisites; it requires only basic plane and spatial Euclidean geometry but no knowledge of topology or group theory. It contains the first elementary proof of the existence of the Alexander polynomial of a knot or a link based on the Conway axioms, particularly the Conway skein relation. The book also contains an elementary exposition of the Jones polynomial, HOMFLY polynomial and Vassiliev knot invariants constructed using the Kontsevich integral. Additionally, there is a lecture introducing the braid group and shows its connection with knots and links. Other important features of the book are the large number of original illustrations, numerous exercises and the absence of any references in the first eleven lectures. The last two lectures differ from the first eleven: they comprise a sketch of non-elementary topics and a brief history of the subject, including many references.

Numbers and Figures

Numbers and Figures
Author :
Publisher : American Mathematical Society
Total Pages : 304
Release :
ISBN-10 : 9781470472566
ISBN-13 : 1470472562
Rating : 4/5 (66 Downloads)

Synopsis Numbers and Figures by : Giancarlo Travaglini

One of the great charms of mathematics is uncovering unexpected connections. In Numbers and Figures, Giancarlo Travaglini provides six conversations that do exactly that by talking about several topics in elementary number theory and some of their connections to geometry, calculus, and real-life problems such as COVID-19 vaccines or fiscal frauds. Each conversation is in two parts—an introductory essay which provides a gentle introduction to the topic and a second section that delves deeper and requires study by the reader. The topics themselves are extremely appealing and include, for example, Pick's theorem, Simpson's paradox, Farey sequences, the Frobenius problem, and Benford's Law. Numbers and Figures will be a useful resource for college faculty teaching Elementary Number Theory or Calculus. The chapters are largely independent and could make for nice course-ending projects or even lead-ins to high school or undergraduate research projects. The whole book would make for an enjoyable semester-long independent reading course. Faculty will find it entertaining bedtime reading and, last but not least, readers more generally will be interested in this book if they miss the accuracy and imagination found in their high school and college math courses.

Finite Fields, with Applications to Combinatorics

Finite Fields, with Applications to Combinatorics
Author :
Publisher : American Mathematical Society
Total Pages : 100
Release :
ISBN-10 : 9781470469306
ISBN-13 : 1470469308
Rating : 4/5 (06 Downloads)

Synopsis Finite Fields, with Applications to Combinatorics by : Kannan Soundararajan

This book uses finite field theory as a hook to introduce the reader to a range of ideas from algebra and number theory. It constructs all finite fields from scratch and shows that they are unique up to isomorphism. As a payoff, several combinatorial applications of finite fields are given: Sidon sets and perfect difference sets, de Bruijn sequences and a magic trick of Persi Diaconis, and the polynomial time algorithm for primality testing due to Agrawal, Kayal and Saxena. The book forms the basis for a one term intensive course with students meeting weekly for multiple lectures and a discussion session. Readers can expect to develop familiarity with ideas in algebra (groups, rings and fields), and elementary number theory, which would help with later classes where these are developed in greater detail. And they will enjoy seeing the AKS primality test application tying together the many disparate topics from the book. The pre-requisites for reading this book are minimal: familiarity with proof writing, some linear algebra, and one variable calculus is assumed. This book is aimed at incoming undergraduate students with a strong interest in mathematics or computer science.

An Introduction to the Circle Method

An Introduction to the Circle Method
Author :
Publisher : American Mathematical Society
Total Pages : 280
Release :
ISBN-10 : 9781470472030
ISBN-13 : 1470472031
Rating : 4/5 (30 Downloads)

Synopsis An Introduction to the Circle Method by : M. Ram Murty

The circle method, pioneered by Ramanujan and Hardy in the early 20th century, has over the past 100 years become part of the standard tool chest of analytic number theory. Its scope of applications is ever-expanding, and the subject continues to see important breakthroughs. This book provides an introduction to the circle method that is accessible to undergraduate students with no background in number theory. The authors' goal is to show the students the elegance of the circle method and at the same time give a complete solution of the famous Waring problem as an illustration of the method. The first half of this book is a curated introduction to elementary number theory with an emphasis on topics needed for the second half. The second half showcases the two most “classic” applications of the circle method, to Waring's problem (following Hardy–Littlewood–Hua) and to Goldbach's conjectures (following Vinogradov, with improvements by Vaughan). This text is suitable for a one-semester undergraduate course or for independent study and will be a great entry point into this fascinating area of research.

Random Explorations

Random Explorations
Author :
Publisher : American Mathematical Society
Total Pages : 215
Release :
ISBN-10 : 9781470467661
ISBN-13 : 1470467666
Rating : 4/5 (61 Downloads)

Synopsis Random Explorations by : Gregory F. Lawler

The title “Random Explorations” has two meanings. First, a few topics of advanced probability are deeply explored. Second, there is a recurring theme of analyzing a random object by exploring a random path. This book is an outgrowth of lectures by the author in the University of Chicago Research Experiences for Undergraduate (REU) program in 2020. The idea of the course was to expose advanced undergraduates to ideas in probability research. The book begins with Markov chains with an emphasis on transient or killed chains that have finite Green's function. This function, and its inverse called the Laplacian, is discussed next to relate two objects that arise in statistical physics, the loop-erased random walk (LERW) and the uniform spanning tree (UST). A modern approach is used including loop measures and soups. Understanding these approaches as the system size goes to infinity requires a deep understanding of the simple random walk so that is studied next, followed by a look at the infinite LERW and UST. Another model, the Gaussian free field (GFF), is introduced and related to loop measure. The emphasis in the book is on discrete models, but the final chapter gives an introduction to the continuous objects: Brownian motion, Brownian loop measures and soups, Schramm-Loewner evolution (SLE), and the continuous Gaussian free field. A number of exercises scattered throughout the text will help a serious reader gain better understanding of the material.

Matrix Models for Population, Disease, and Evolutionary Dynamics

Matrix Models for Population, Disease, and Evolutionary Dynamics
Author :
Publisher : American Mathematical Society
Total Pages : 293
Release :
ISBN-10 : 9781470473341
ISBN-13 : 1470473348
Rating : 4/5 (41 Downloads)

Synopsis Matrix Models for Population, Disease, and Evolutionary Dynamics by : J. M. Cushing

This book offers an introduction to the use of matrix theory and linear algebra in modeling the dynamics of biological populations. Matrix algebra has been used in population biology since the 1940s and continues to play a major role in theoretical and applied dynamics for populations structured by age, body size or weight, disease states, physiological and behavioral characteristics, life cycle stages, or any of many other possible classification schemes. With a focus on matrix models, the book requires only first courses in multivariable calculus and matrix theory or linear algebra as prerequisites. The reader will learn the basics of modeling methodology (i.e., how to set up a matrix model from biological underpinnings) and the fundamentals of the analysis of discrete time dynamical systems (equilibria, stability, bifurcations, etc.). A recurrent theme in all chapters concerns the problem of extinction versus survival of a population. In addition to numerous examples that illustrate these fundamentals, several applications appear at the end of each chapter that illustrate the full cycle of model setup, mathematical analysis, and interpretation. The author has used the material over many decades in a variety of teaching and mentoring settings, including special topics courses and seminars in mathematical modeling, mathematical biology, and dynamical systems.