An Invitation to Modern Number Theory

An Invitation to Modern Number Theory
Author :
Publisher : Princeton University Press
Total Pages : 526
Release :
ISBN-10 : 9780691215976
ISBN-13 : 0691215979
Rating : 4/5 (76 Downloads)

Synopsis An Invitation to Modern Number Theory by : Steven J. Miller

In a manner accessible to beginning undergraduates, An Invitation to Modern Number Theory introduces many of the central problems, conjectures, results, and techniques of the field, such as the Riemann Hypothesis, Roth's Theorem, the Circle Method, and Random Matrix Theory. Showing how experiments are used to test conjectures and prove theorems, the book allows students to do original work on such problems, often using little more than calculus (though there are numerous remarks for those with deeper backgrounds). It shows students what number theory theorems are used for and what led to them and suggests problems for further research. Steven Miller and Ramin Takloo-Bighash introduce the problems and the computational skills required to numerically investigate them, providing background material (from probability to statistics to Fourier analysis) whenever necessary. They guide students through a variety of problems, ranging from basic number theory, cryptography, and Goldbach's Problem, to the algebraic structures of numbers and continued fractions, showing connections between these subjects and encouraging students to study them further. In addition, this is the first undergraduate book to explore Random Matrix Theory, which has recently become a powerful tool for predicting answers in number theory. Providing exercises, references to the background literature, and Web links to previous student research projects, An Invitation to Modern Number Theory can be used to teach a research seminar or a lecture class.

An Invitation to Abstract Algebra

An Invitation to Abstract Algebra
Author :
Publisher : CRC Press
Total Pages : 397
Release :
ISBN-10 : 9781000516333
ISBN-13 : 1000516334
Rating : 4/5 (33 Downloads)

Synopsis An Invitation to Abstract Algebra by : Steven J. Rosenberg

Studying abstract algebra can be an adventure of awe-inspiring discovery. The subject need not be watered down nor should it be presented as if all students will become mathematics instructors. This is a beautiful, profound, and useful field which is part of the shared language of many areas both within and outside of mathematics. To begin this journey of discovery, some experience with mathematical reasoning is beneficial. This text takes a fairly rigorous approach to its subject, and expects the reader to understand and create proofs as well as examples throughout. The book follows a single arc, starting from humble beginnings with arithmetic and high-school algebra, gradually introducing abstract structures and concepts, and culminating with Niels Henrik Abel and Evariste Galois’ achievement in understanding how we can—and cannot—represent the roots of polynomials. The mathematically experienced reader may recognize a bias toward commutative algebra and fondness for number theory. The presentation includes the following features: Exercises are designed to support and extend the material in the chapter, as well as prepare for the succeeding chapters. The text can be used for a one, two, or three-term course. Each new topic is motivated with a question. A collection of projects appears in Chapter 23. Abstract algebra is indeed a deep subject; it can transform not only the way one thinks about mathematics, but the way that one thinks—period. This book is offered as a manual to a new way of thinking. The author’s aim is to instill the desire to understand the material, to encourage more discovery, and to develop an appreciation of the subject for its own sake.

An Invitation to Abstract Mathematics

An Invitation to Abstract Mathematics
Author :
Publisher : Springer Nature
Total Pages : 443
Release :
ISBN-10 : 9783030561741
ISBN-13 : 3030561747
Rating : 4/5 (41 Downloads)

Synopsis An Invitation to Abstract Mathematics by : Béla Bajnok

This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH

An Invitation to Arithmetic Geometry

An Invitation to Arithmetic Geometry
Author :
Publisher : American Mathematical Society
Total Pages : 397
Release :
ISBN-10 : 9781470467258
ISBN-13 : 1470467259
Rating : 4/5 (58 Downloads)

Synopsis An Invitation to Arithmetic Geometry by : Dino Lorenzini

Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.

Introduction to Analytic and Probabilistic Number Theory

Introduction to Analytic and Probabilistic Number Theory
Author :
Publisher : Cambridge University Press
Total Pages : 180
Release :
ISBN-10 : 0521412617
ISBN-13 : 9780521412612
Rating : 4/5 (17 Downloads)

Synopsis Introduction to Analytic and Probabilistic Number Theory by : G. Tenenbaum

This is a self-contained introduction to analytic methods in number theory, assuming on the part of the reader only what is typically learned in a standard undergraduate degree course. It offers to students and those beginning research a systematic and consistent account of the subject but will also be a convenient resource and reference for more experienced mathematicians. These aspects are aided by the inclusion at the end of each chapter a section of bibliographic notes and detailed exercises.

An Invitation to the Rogers-Ramanujan Identities

An Invitation to the Rogers-Ramanujan Identities
Author :
Publisher : CRC Press
Total Pages : 263
Release :
ISBN-10 : 9781351647960
ISBN-13 : 1351647962
Rating : 4/5 (60 Downloads)

Synopsis An Invitation to the Rogers-Ramanujan Identities by : Andrew V. Sills

The Rogers--Ramanujan identities are a pair of infinite series—infinite product identities that were first discovered in 1894. Over the past several decades these identities, and identities of similar type, have found applications in number theory, combinatorics, Lie algebra and vertex operator algebra theory, physics (especially statistical mechanics), and computer science (especially algorithmic proof theory). Presented in a coherant and clear way, this will be the first book entirely devoted to the Rogers—Ramanujan identities and will include related historical material that is unavailable elsewhere.

Number Theory

Number Theory
Author :
Publisher :
Total Pages : 636
Release :
ISBN-10 : 9530308973
ISBN-13 : 9789530308978
Rating : 4/5 (73 Downloads)

Synopsis Number Theory by : Andrej Dujella

Analytic Number Theory, Approximation Theory, and Special Functions

Analytic Number Theory, Approximation Theory, and Special Functions
Author :
Publisher : Springer
Total Pages : 873
Release :
ISBN-10 : 9781493902583
ISBN-13 : 149390258X
Rating : 4/5 (83 Downloads)

Synopsis Analytic Number Theory, Approximation Theory, and Special Functions by : Gradimir V. Milovanović

This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.

Combinatorial and Additive Number Theory II

Combinatorial and Additive Number Theory II
Author :
Publisher : Springer
Total Pages : 309
Release :
ISBN-10 : 9783319680323
ISBN-13 : 3319680323
Rating : 4/5 (23 Downloads)

Synopsis Combinatorial and Additive Number Theory II by : Melvyn B. Nathanson

Based on talks from the 2015 and 2016 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 19 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, primality testing, and cryptography are among the topics featured in this volume. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. Researchers and graduate students interested in the current progress in number theory will find this selection of articles relevant and compelling.

Cybercryptography: Applicable Cryptography for Cyberspace Security

Cybercryptography: Applicable Cryptography for Cyberspace Security
Author :
Publisher : Springer
Total Pages : 443
Release :
ISBN-10 : 9783319725369
ISBN-13 : 331972536X
Rating : 4/5 (69 Downloads)

Synopsis Cybercryptography: Applicable Cryptography for Cyberspace Security by : Song Y. Yan

This book provides the basic theory, techniques, and algorithms of modern cryptography that are applicable to network and cyberspace security. It consists of the following nine main chapters: Chapter 1 provides the basic concepts and ideas of cyberspace and cyberspace security, Chapters 2 and 3 provide an introduction to mathematical and computational preliminaries, respectively. Chapters 4 discusses the basic ideas and system of secret-key cryptography, whereas Chapters 5, 6, and 7 discuss the basic ideas and systems of public-key cryptography based on integer factorization, discrete logarithms, and elliptic curves, respectively. Quantum-safe cryptography is presented in Chapter 8 and offensive cryptography, particularly cryptovirology, is covered in Chapter 9. This book can be used as a secondary text for final-year undergraduate students and first-year postgraduate students for courses in Computer, Network, and Cyberspace Security. Researchers and practitioners working in cyberspace security and network security will also find this book useful as a reference.