An Introduction to Markov Processes

An Introduction to Markov Processes
Author :
Publisher : Springer Science & Business Media
Total Pages : 213
Release :
ISBN-10 : 9783642405235
ISBN-13 : 3642405231
Rating : 4/5 (35 Downloads)

Synopsis An Introduction to Markov Processes by : Daniel W. Stroock

This book provides a rigorous but elementary introduction to the theory of Markov Processes on a countable state space. It should be accessible to students with a solid undergraduate background in mathematics, including students from engineering, economics, physics, and biology. Topics covered are: Doeblin's theory, general ergodic properties, and continuous time processes. Applications are dispersed throughout the book. In addition, a whole chapter is devoted to reversible processes and the use of their associated Dirichlet forms to estimate the rate of convergence to equilibrium. These results are then applied to the analysis of the Metropolis (a.k.a simulated annealing) algorithm. The corrected and enlarged 2nd edition contains a new chapter in which the author develops computational methods for Markov chains on a finite state space. Most intriguing is the section with a new technique for computing stationary measures, which is applied to derivations of Wilson's algorithm and Kirchoff's formula for spanning trees in a connected graph.

A Course on Large Deviations with an Introduction to Gibbs Measures

A Course on Large Deviations with an Introduction to Gibbs Measures
Author :
Publisher : American Mathematical Soc.
Total Pages : 335
Release :
ISBN-10 : 9780821875780
ISBN-13 : 0821875787
Rating : 4/5 (80 Downloads)

Synopsis A Course on Large Deviations with an Introduction to Gibbs Measures by : Firas Rassoul-Agha

This is an introductory course on the methods of computing asymptotics of probabilities of rare events: the theory of large deviations. The book combines large deviation theory with basic statistical mechanics, namely Gibbs measures with their variational characterization and the phase transition of the Ising model, in a text intended for a one semester or quarter course. The book begins with a straightforward approach to the key ideas and results of large deviation theory in the context of independent identically distributed random variables. This includes Cramér's theorem, relative entropy, Sanov's theorem, process level large deviations, convex duality, and change of measure arguments. Dependence is introduced through the interactions potentials of equilibrium statistical mechanics. The phase transition of the Ising model is proved in two different ways: first in the classical way with the Peierls argument, Dobrushin's uniqueness condition, and correlation inequalities and then a second time through the percolation approach. Beyond the large deviations of independent variables and Gibbs measures, later parts of the book treat large deviations of Markov chains, the Gärtner-Ellis theorem, and a large deviation theorem of Baxter and Jain that is then applied to a nonstationary process and a random walk in a dynamical random environment. The book has been used with students from mathematics, statistics, engineering, and the sciences and has been written for a broad audience with advanced technical training. Appendixes review basic material from analysis and probability theory and also prove some of the technical results used in the text.

Large Deviations Techniques and Applications

Large Deviations Techniques and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 409
Release :
ISBN-10 : 9783642033117
ISBN-13 : 3642033113
Rating : 4/5 (17 Downloads)

Synopsis Large Deviations Techniques and Applications by : Amir Dembo

Large deviation estimates have proved to be the crucial tool required to handle many questions in statistics, engineering, statistial mechanics, and applied probability. Amir Dembo and Ofer Zeitouni, two of the leading researchers in the field, provide an introduction to the theory of large deviations and applications at a level suitable for graduate students. The mathematics is rigorous and the applications come from a wide range of areas, including electrical engineering and DNA sequences. The second edition, printed in 1998, included new material on concentration inequalities and the metric and weak convergence approaches to large deviations. General statements and applications were sharpened, new exercises added, and the bibliography updated. The present soft cover edition is a corrected printing of the 1998 edition.

Large Deviations

Large Deviations
Author :
Publisher : American Mathematical Soc.
Total Pages : 164
Release :
ISBN-10 : 0821844350
ISBN-13 : 9780821844359
Rating : 4/5 (50 Downloads)

Synopsis Large Deviations by : Frank Hollander

Offers an introduction to large deviations. This book is divided into two parts: theory and applications. It presents basic large deviation theorems for i i d sequences, Markov sequences, and sequences with moderate dependence. It also includes an outline of general definitions and theorems.

A Weak Convergence Approach to the Theory of Large Deviations

A Weak Convergence Approach to the Theory of Large Deviations
Author :
Publisher : John Wiley & Sons
Total Pages : 506
Release :
ISBN-10 : 9781118165898
ISBN-13 : 1118165896
Rating : 4/5 (98 Downloads)

Synopsis A Weak Convergence Approach to the Theory of Large Deviations by : Paul Dupuis

Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems. Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.

Large Deviations in Physics

Large Deviations in Physics
Author :
Publisher : Springer
Total Pages : 323
Release :
ISBN-10 : 9783642542510
ISBN-13 : 3642542514
Rating : 4/5 (10 Downloads)

Synopsis Large Deviations in Physics by : Angelo Vulpiani

This book reviews the basic ideas of the Law of Large Numbers with its consequences to the deterministic world and the issue of ergodicity. Applications of Large Deviations and their outcomes to Physics are surveyed. The book covers topics encompassing ergodicity and its breaking and the modern applications of Large deviations to equilibrium and non-equilibrium statistical physics, disordered and chaotic systems, and turbulence.

Entropy, Large Deviations, and Statistical Mechanics

Entropy, Large Deviations, and Statistical Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 372
Release :
ISBN-10 : 9781461385332
ISBN-13 : 1461385334
Rating : 4/5 (32 Downloads)

Synopsis Entropy, Large Deviations, and Statistical Mechanics by : Richard.S. Ellis

This book has two main topics: large deviations and equilibrium statistical mechanics. I hope to convince the reader that these topics have many points of contact and that in being treated together, they enrich each other. Entropy, in its various guises, is their common core. The large deviation theory which is developed in this book focuses upon convergence properties of certain stochastic systems. An elementary example is the weak law of large numbers. For each positive e, P{ISn/nl 2: e} con verges to zero as n --+ 00, where Sn is the nth partial sum of indepen dent identically distributed random variables with zero mean. Large deviation theory shows that if the random variables are exponentially bounded, then the probabilities converge to zero exponentially fast as n --+ 00. The exponen tial decay allows one to prove the stronger property of almost sure conver gence (Sn/n --+ 0 a.s.). This example will be generalized extensively in the book. We will treat a large class of stochastic systems which involve both indepen dent and dependent random variables and which have the following features: probabilities converge to zero exponentially fast as the size of the system increases; the exponential decay leads to strong convergence properties of the system. The most fascinating aspect of the theory is that the exponential decay rates are computable in terms of entropy functions. This identification between entropy and decay rates of large deviation probabilities enhances the theory significantly.

Large Deviations

Large Deviations
Author :
Publisher : American Mathematical Soc.
Total Pages : 298
Release :
ISBN-10 : 9780821827574
ISBN-13 : 082182757X
Rating : 4/5 (74 Downloads)

Synopsis Large Deviations by : Jean-Dominique Deuschel

This is the second printing of the book first published in 1988. The first four chapters of the volume are based on lectures given by Stroock at MIT in 1987. They form an introduction to the basic ideas of the theory of large deviations and make a suitable package on which to base a semester-length course for advanced graduate students with a strong background in analysis and some probability theory. A large selection of exercises presents important material and many applications. The last two chapters present various non-uniform results (Chapter 5) and outline the analytic approach that allows one to test and compare techniques used in previous chapters (Chapter 6).

Large Deviations For Performance Analysis

Large Deviations For Performance Analysis
Author :
Publisher : CRC Press
Total Pages : 576
Release :
ISBN-10 : 0412063115
ISBN-13 : 9780412063114
Rating : 4/5 (15 Downloads)

Synopsis Large Deviations For Performance Analysis by : Adam Shwartz

This book consists of two synergistic parts. The first half develops the theory of large deviations from the beginning (iid random variables) through recent results on the theory for processes with boundaries, keeping to a very narrow path: continuous-time, discrete-state processes. By developing only what is needed for the applications, the theory is kept to a manageable level, both in terms of length and in terms of difficulty. Within its scope, the treatment is detailed, comprehensive and self-contained. As the book shows, there are sufficiently many interesting applications of jump Markov processes to warrant a special treatment. The second half is a collection of applications developed at Bell Laboratories. The applications cover large areas of the theory of communication networks: circuit-switched transmission, packet transmission, multiple access channels, and the M/M/1 queue. Aspects of parallel computation are covered as well: basics of job allocation, rollback-based parallel simulation, assorted priority queueing models that might be used in performance models of various computer architectures, and asymptotic coupling of processors. These applications are thoroughly analyzed using the tools developed in the first half of the book. Features: A transient analysis of the M/M/1 queue; a new analysis of an Aloha model using Markov modulated theory; new results for Erlang's model; new results for the AMS model; analysis of "serve the longer queue", "join the shorter queue" and other simple priority queues; and a simple analysis of the Flatto-Hahn-Wright model of processor-sharing.

Large Deviations for Stochastic Processes

Large Deviations for Stochastic Processes
Author :
Publisher : American Mathematical Soc.
Total Pages : 426
Release :
ISBN-10 : 9780821841457
ISBN-13 : 0821841459
Rating : 4/5 (57 Downloads)

Synopsis Large Deviations for Stochastic Processes by : Jin Feng

The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are de