An Introduction to the Theory of Canonical Matrices

An Introduction to the Theory of Canonical Matrices
Author :
Publisher : Courier Corporation
Total Pages : 222
Release :
ISBN-10 : 9780486153469
ISBN-13 : 0486153460
Rating : 4/5 (69 Downloads)

Synopsis An Introduction to the Theory of Canonical Matrices by : H. W. Turnbull

Elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. 1952 edition. 275 problems.

Introduction to Matrix Theory

Introduction to Matrix Theory
Author :
Publisher : Springer Nature
Total Pages : 199
Release :
ISBN-10 : 9783030804817
ISBN-13 : 303080481X
Rating : 4/5 (17 Downloads)

Synopsis Introduction to Matrix Theory by : Arindama Singh

This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.

Vector Spaces and Matrices

Vector Spaces and Matrices
Author :
Publisher : Courier Corporation
Total Pages : 340
Release :
ISBN-10 : 9780486321059
ISBN-13 : 0486321053
Rating : 4/5 (59 Downloads)

Synopsis Vector Spaces and Matrices by : Robert M. Thrall

Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.

The Theory of Matrices

The Theory of Matrices
Author :
Publisher : Springer Science & Business Media
Total Pages : 121
Release :
ISBN-10 : 9783642992346
ISBN-13 : 364299234X
Rating : 4/5 (46 Downloads)

Synopsis The Theory of Matrices by : Cyrus Colton MacDuffee

Matric algebra is a mathematical abstraction underlying many seemingly diverse theories. Thus bilinear and quadratic forms, linear associative algebra (hypercomplex systems), linear homogeneous trans formations and linear vector functions are various manifestations of matric algebra. Other branches of mathematics as number theory, differential and integral equations, continued fractions, projective geometry etc. make use of certain portions of this subject. Indeed, many of the fundamental properties of matrices were first discovered in the notation of a particular application, and not until much later re cognized in their generality. It was not possible within the scope of this book to give a completely detailed account of matric theory, nor is it intended to make it an authoritative history of the subject. It has been the desire of the writer to point out the various directions in which the theory leads so that the reader may in a general way see its extent. While some attempt has been made to unify certain parts of the theory, in general the material has been taken as it was found in the literature, the topics discussed in detail being those in which extensive research has taken place. For most of the important theorems a brief and elegant proof has sooner or later been found. It is hoped that most of these have been incorporated in the text, and that the reader will derive as much plea sure from reading them as did the writer.

Matrix Theory

Matrix Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 290
Release :
ISBN-10 : 9781475757972
ISBN-13 : 1475757972
Rating : 4/5 (72 Downloads)

Synopsis Matrix Theory by : Fuzhen Zhang

This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.

Linear Algebra and Matrix Theory

Linear Algebra and Matrix Theory
Author :
Publisher : Courier Corporation
Total Pages : 290
Release :
ISBN-10 : 9780486623184
ISBN-13 : 0486623181
Rating : 4/5 (84 Downloads)

Synopsis Linear Algebra and Matrix Theory by : Robert R. Stoll

Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.

An Introduction to the Theory of Canonical Matrices

An Introduction to the Theory of Canonical Matrices
Author :
Publisher : Hassell Street Press
Total Pages : 236
Release :
ISBN-10 : 1013651812
ISBN-13 : 9781013651816
Rating : 4/5 (12 Downloads)

Synopsis An Introduction to the Theory of Canonical Matrices by : H W (Herbert Westren) 18 Turnbull

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Spectral Theory of Canonical Systems

Spectral Theory of Canonical Systems
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 244
Release :
ISBN-10 : 9783110562286
ISBN-13 : 3110562286
Rating : 4/5 (86 Downloads)

Synopsis Spectral Theory of Canonical Systems by : Christian Remling

Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schrödinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. ‘Spectral Theory of Canonical Systems’ offers a selfcontained and detailed introduction to this theory. Techniques to construct self-adjoint realizations in suitable Hilbert spaces, a modern treatment of de Branges spaces, and direct and inverse spectral problems are discussed. Contents Basic definitions Symmetric and self-adjoint relations Spectral representation Transfer matrices and de Branges spaces Inverse spectral theory Some applications The absolutely continuous spectrum