An Introduction To Stochastic Processes In Physics
Download An Introduction To Stochastic Processes In Physics full books in PDF, epub, and Kindle. Read online free An Introduction To Stochastic Processes In Physics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Don S. Lemons |
Publisher |
: JHU Press |
Total Pages |
: 132 |
Release |
: 2002-06-21 |
ISBN-10 |
: 080186867X |
ISBN-13 |
: 9780801868672 |
Rating |
: 4/5 (7X Downloads) |
Synopsis An Introduction to Stochastic Processes in Physics by : Don S. Lemons
This book provides an accessible introduction to stochastic processes in physics and describes the basic mathematical tools of the trade: probability, random walks, and Wiener and Ornstein-Uhlenbeck processes. It includes end-of-chapter problems and emphasizes applications. An Introduction to Stochastic Processes in Physics builds directly upon early-twentieth-century explanations of the "peculiar character in the motions of the particles of pollen in water" as described, in the early nineteenth century, by the biologist Robert Brown. Lemons has adopted Paul Langevin's 1908 approach of applying Newton's second law to a "Brownian particle on which the total force included a random component" to explain Brownian motion. This method builds on Newtonian dynamics and provides an accessible explanation to anyone approaching the subject for the first time. Students will find this book a useful aid to learning the unfamiliar mathematical aspects of stochastic processes while applying them to physical processes that he or she has already encountered.
Author |
: Kurt Jacobs |
Publisher |
: Cambridge University Press |
Total Pages |
: 203 |
Release |
: 2010-02-18 |
ISBN-10 |
: 9781139486798 |
ISBN-13 |
: 1139486799 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Stochastic Processes for Physicists by : Kurt Jacobs
Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.
Author |
: Horacio S. Wio |
Publisher |
: World Scientific Publishing Company Incorporated |
Total Pages |
: 217 |
Release |
: 1994-01-01 |
ISBN-10 |
: 9810215711 |
ISBN-13 |
: 9789810215712 |
Rating |
: 4/5 (11 Downloads) |
Synopsis An Introduction to Stochastic Processes and Nonequilibrium Statistical Physics by : Horacio S. Wio
Author |
: Robert P. Dobrow |
Publisher |
: John Wiley & Sons |
Total Pages |
: 504 |
Release |
: 2016-03-07 |
ISBN-10 |
: 9781118740651 |
ISBN-13 |
: 1118740653 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Introduction to Stochastic Processes with R by : Robert P. Dobrow
An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.
Author |
: N.G. Van Kampen |
Publisher |
: Elsevier |
Total Pages |
: 482 |
Release |
: 1992-11-20 |
ISBN-10 |
: 9780080571386 |
ISBN-13 |
: 0080571387 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Stochastic Processes in Physics and Chemistry by : N.G. Van Kampen
This new edition of Van Kampen's standard work has been completely revised and updated. Three major changes have also been made. The Langevin equation receives more attention in a separate chapter in which non-Gaussian and colored noise are introduced. Another additional chapter contains old and new material on first-passage times and related subjects which lay the foundation for the chapter on unstable systems. Finally a completely new chapter has been written on the quantum mechanical foundations of noise. The references have also been expanded and updated.
Author |
: Wolfgang Paul |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 288 |
Release |
: 2013-07-11 |
ISBN-10 |
: 9783319003276 |
ISBN-13 |
: 3319003275 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Stochastic Processes by : Wolfgang Paul
This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.
Author |
: Pierre Del Moral |
Publisher |
: CRC Press |
Total Pages |
: 866 |
Release |
: 2017-02-24 |
ISBN-10 |
: 9781498701846 |
ISBN-13 |
: 1498701841 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Stochastic Processes by : Pierre Del Moral
Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.
Author |
: Grigorios A. Pavliotis |
Publisher |
: Springer |
Total Pages |
: 345 |
Release |
: 2014-11-19 |
ISBN-10 |
: 9781493913237 |
ISBN-13 |
: 1493913239 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Author |
: René L. Schilling |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 424 |
Release |
: 2014-06-18 |
ISBN-10 |
: 9783110307306 |
ISBN-13 |
: 3110307308 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Brownian Motion by : René L. Schilling
Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors’ aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.
Author |
: Zeev Schuss |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 486 |
Release |
: 2009-12-09 |
ISBN-10 |
: 9781441916051 |
ISBN-13 |
: 1441916059 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Theory and Applications of Stochastic Processes by : Zeev Schuss
Stochastic processes and diffusion theory are the mathematical underpinnings of many scientific disciplines, including statistical physics, physical chemistry, molecular biophysics, communications theory and many more. Many books, reviews and research articles have been published on this topic, from the purely mathematical to the most practical. This book offers an analytical approach to stochastic processes that are most common in the physical and life sciences, as well as in optimal control and in the theory of filltering of signals from noisy measurements. Its aim is to make probability theory in function space readily accessible to scientists trained in the traditional methods of applied mathematics, such as integral, ordinary, and partial differential equations and asymptotic methods, rather than in probability and measure theory.