An Introduction to Ocean Turbulence

An Introduction to Ocean Turbulence
Author :
Publisher : Cambridge University Press
Total Pages : 266
Release :
ISBN-10 : 0521859484
ISBN-13 : 9780521859486
Rating : 4/5 (84 Downloads)

Synopsis An Introduction to Ocean Turbulence by : S. A. Thorpe

This textbook provides an introduction to turbulent motion occurring naturally in the ocean on scales ranging from millimetres to hundreds of kilometres. It describes turbulence in the mixed boundary layers at the sea surface and seabed, turbulent motion in the density-stratified water between, and the energy sources that support and sustain ocean mixing. Little prior knowledge of physical oceanography is assumed. The text is supported by numerous figures, extensive further reading lists, and more than 50 exercises that are graded in difficulty. Detailed solutions to the exercises are available to instructors online at www.cambridge.org/9780521859486. This textbook is intended for undergraduate courses in physical oceanography, and all students interested in multidisciplinary aspects of how the ocean works, from the shoreline to the deep abyssal plains. It also forms a useful lead-in to the author's more advanced graduate textbook, The Turbulent Ocean (Cambridge University Press, 2005).

An Introduction to Ocean Turbulence

An Introduction to Ocean Turbulence
Author :
Publisher : Cambridge University Press
Total Pages :
Release :
ISBN-10 : 9781139467810
ISBN-13 : 1139467816
Rating : 4/5 (10 Downloads)

Synopsis An Introduction to Ocean Turbulence by : S. A. Thorpe

This textbook provides an introduction to turbulent motion occurring naturally in the ocean on scales ranging from millimetres to hundreds of kilometres. It describes turbulence in the mixed boundary layers at the sea surface and seabed, turbulent motion in the density-stratified water between, and the energy sources that support and sustain ocean mixing. Little prior knowledge of physical oceanography is assumed. The text is supported by numerous figures, extensive further reading lists, and more than 50 exercises that are graded in difficulty. Detailed solutions to the exercises are available to instructors online at www.cambridge.org/9780521859486. This textbook is intended for undergraduate courses in physical oceanography, and all students interested in multidisciplinary aspects of how the ocean works, from the shoreline to the deep abyssal plains. It also forms a useful lead-in to the author's more advanced graduate textbook, The Turbulent Ocean (Cambridge University Press, 2005).

The Turbulent Ocean

The Turbulent Ocean
Author :
Publisher : Cambridge University Press
Total Pages : 496
Release :
ISBN-10 : 1139445790
ISBN-13 : 9781139445795
Rating : 4/5 (90 Downloads)

Synopsis The Turbulent Ocean by : S. A. Thorpe

The subject of ocean turbulence is in a state of discovery and development with many intellectual challenges. This book describes the principal dynamic processes that control the distribution of turbulence, its dissipation of kinetic energy and its effects on the dispersion of properties such as heat, salinity, and dissolved or suspended matter in the deep ocean, the shallow coastal and the continental shelf seas. It focuses on the measurement of turbulence, and the consequences of turbulent motion in the oceanic boundary layers at the sea surface and near the seabed. Processes are illustrated by examples of laboratory experiments and field observations. The Turbulent Ocean provides an excellent resource for senior undergraduate and graduate courses, as well as an introduction and general overview for researchers. It will be of interest to all those involved in the study of fluid motion, in particular geophysical fluid mechanics, meteorology and the dynamics of lakes.

Ocean Mixing

Ocean Mixing
Author :
Publisher : Elsevier
Total Pages : 386
Release :
ISBN-10 : 9780128215135
ISBN-13 : 0128215135
Rating : 4/5 (35 Downloads)

Synopsis Ocean Mixing by : Michael Meredith

Ocean Mixing: Drivers, Mechanisms and Impacts presents a broad panorama of one of the most rapidly-developing areas of marine science. It highlights the state-of-the-art concerning knowledge of the causes of ocean mixing, and a perspective on the implications for ocean circulation, climate, biogeochemistry and the marine ecosystem. This edited volume places a particular emphasis on elucidating the key future questions relating to ocean mixing, and emerging ideas and activities to address them, including innovative technology developments and advances in methodology. Ocean Mixing is a key reference for those entering the field, and for those seeking a comprehensive overview of how the key current issues are being addressed and what the priorities for future research are. Each chapter is written by established leaders in ocean mixing research; the volume is thus suitable for those seeking specific detailed information on sub-topics, as well as those seeking a broad synopsis of current understanding. It provides useful ammunition for those pursuing funding for specific future research campaigns, by being an authoritative source concerning key scientific goals in the short, medium and long term. Additionally, the chapters contain bespoke and informative graphics that can be used in teaching and science communication to convey the complex concepts and phenomena in easily accessible ways. - Presents a coherent overview of the state-of-the-art research concerning ocean mixing - Provides an in-depth discussion of how ocean mixing impacts all scales of the planetary system - Includes elucidation of the grand challenges in ocean mixing, and how they might be addressed

Ocean Dynamics

Ocean Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 717
Release :
ISBN-10 : 9783642234507
ISBN-13 : 364223450X
Rating : 4/5 (07 Downloads)

Synopsis Ocean Dynamics by : Dirk Olbers

Ocean Dynamics’ is a concise introduction to the fundamentals of fluid mechanics, non-equilibrium thermodynamics and the common approximations for geophysical fluid dynamics, presenting a comprehensive approach to large-scale ocean circulation theory. The book is written on the physical and mathematical level of graduate students in theoretical courses of physical oceanography, meteorology and environmental physics. An extensive bibliography and index, extensive side notes and recommendations for further reading, and a comparison with the specific atmospheric physics where applicable, makes this volume also a useful reading for researchers. Each of the four parts of the book – fundamental laws, common approximations, ocean waves, oceanic turbulence and eddies, and selected aspects of ocean dynamics – starts with elementary considerations, blending then classical topics with more advanced developments of fluid mechanics and theoretical oceanography. The last part covers the theory of the global wind-driven circulation in homogeneous and stratified regimes, the circulation and overturning in the Southern Ocean, and the global meridional overturning and thermohaline-driven circulation. Emphasis is placed on simple physical models rather than access to extensive numerical results, enabling students to understand and reproduce the complex theory mostly by analytical means. All equations and models are derived in detail and illustrated by numerous figures. The appendix provides short excursions into the mathematical background, such as vector analysis, statistics, and differential equations

Atmospheric and Oceanic Fluid Dynamics

Atmospheric and Oceanic Fluid Dynamics
Author :
Publisher : Cambridge University Press
Total Pages : 772
Release :
ISBN-10 : 9781139459969
ISBN-13 : 1139459961
Rating : 4/5 (69 Downloads)

Synopsis Atmospheric and Oceanic Fluid Dynamics by : Geoffrey K. Vallis

Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.

Turbulence in the Atmosphere

Turbulence in the Atmosphere
Author :
Publisher : Cambridge University Press
Total Pages : 407
Release :
ISBN-10 : 9781139485524
ISBN-13 : 1139485520
Rating : 4/5 (24 Downloads)

Synopsis Turbulence in the Atmosphere by : John C. Wyngaard

Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.

An Introduction to Ocean Turbulence

An Introduction to Ocean Turbulence
Author :
Publisher :
Total Pages : 293
Release :
ISBN-10 : 051164941X
ISBN-13 : 9780511649417
Rating : 4/5 (1X Downloads)

Synopsis An Introduction to Ocean Turbulence by : S. A. Thorpe (FRS.)

Air-Ice-Ocean Interaction

Air-Ice-Ocean Interaction
Author :
Publisher : Springer Science & Business Media
Total Pages : 218
Release :
ISBN-10 : 9780387783352
ISBN-13 : 0387783350
Rating : 4/5 (52 Downloads)

Synopsis Air-Ice-Ocean Interaction by : Miles McPhee

At a time when the polar regions are undergoing rapid and unprecedented change, understanding exchanges of momentum, heat and salt at the ice-ocean interface is critical for realistically predicting the future state of sea ice. By offering a measurement platform largely unaffected by surface waves, drifting sea ice provides a unique laboratory for studying aspects of geophysical boundary layer flows that are extremely difficult to measure elsewhere. This book draws on both extensive observations and theoretical principles to develop a concise description of the impact of stress, rotation, and buoyancy on the turbulence scales that control exchanges between the atmosphere and underlying ocean when sea ice is present. Several interesting and unique observational data sets are used to illustrate different aspects of ice-ocean interaction ranging from the impact of salt on melting in the Greenland Sea marginal ice zone, to how nonlinearities in the equation of state for seawater affect mixing in the Weddell Sea. The book’s content, developed from a series of lectures, may be appropriate additional material for upper-level undergraduates and first-year graduate students studying the geophysics of sea ice and planetary boundary layers.

A First Course in Turbulence

A First Course in Turbulence
Author :
Publisher : MIT Press
Total Pages : 316
Release :
ISBN-10 : 9780262536301
ISBN-13 : 0262536307
Rating : 4/5 (01 Downloads)

Synopsis A First Course in Turbulence by : Henk Tennekes

This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of rivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and spectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.