An Introduction To Natural Computation
Download An Introduction To Natural Computation full books in PDF, epub, and Kindle. Read online free An Introduction To Natural Computation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Dana H. Ballard |
Publisher |
: MIT Press |
Total Pages |
: 338 |
Release |
: 1999-01-22 |
ISBN-10 |
: 0262522586 |
ISBN-13 |
: 9780262522588 |
Rating |
: 4/5 (86 Downloads) |
Synopsis An Introduction to Natural Computation by : Dana H. Ballard
This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It is now clear that the brain is unlikely to be understood without recourse to computational theories. The theme of An Introduction to Natural Computation is that ideas from diverse areas such as neuroscience, information theory, and optimization theory have recently been extended in ways that make them useful for describing the brains programs. This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It stresses the broad spectrum of learning models—ranging from neural network learning through reinforcement learning to genetic learning—and situates the various models in their appropriate neural context. To write about models of the brain before the brain is fully understood is a delicate matter. Very detailed models of the neural circuitry risk losing track of the task the brain is trying to solve. At the other extreme, models that represent cognitive constructs can be so abstract that they lose all relationship to neurobiology. An Introduction to Natural Computation takes the middle ground and stresses the computational task while staying near the neurobiology.
Author |
: Jacob Eisenstein |
Publisher |
: MIT Press |
Total Pages |
: 535 |
Release |
: 2019-10-01 |
ISBN-10 |
: 9780262042840 |
ISBN-13 |
: 0262042843 |
Rating |
: 4/5 (40 Downloads) |
Synopsis Introduction to Natural Language Processing by : Jacob Eisenstein
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.
Author |
: A.E. Eiben |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 328 |
Release |
: 2007-08-06 |
ISBN-10 |
: 3540401849 |
ISBN-13 |
: 9783540401841 |
Rating |
: 4/5 (49 Downloads) |
Synopsis Introduction to Evolutionary Computing by : A.E. Eiben
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Author |
: Whitman Richards |
Publisher |
: MIT Press (MA) |
Total Pages |
: 584 |
Release |
: 1988 |
ISBN-10 |
: UOM:39015014198389 |
ISBN-13 |
: |
Rating |
: 4/5 (89 Downloads) |
Synopsis Natural Computation by : Whitman Richards
Designed for the MIT course, "Natural Computation, this extensive book of readings combines mathematics, artificial intelligence, computer science, experimental psychology, and neurophysiology in studying perception. Mathematics is emphasized for making perceptual inferences and the spectrum of mathematical techniques used is very broad. While the more than thirty readings focus primarily on vision, they also encompass the study of sound perception and the interpretation and application of forces including movement.Each article is a self contained example of how a perceptual problem may be tackled and solved. For example, what makes wood look like wood not like stone, sand, or grass? How can we represent three dimensional shapes when the same shape is rarely seen in exactly the same way? Each of the five sections is preceded by an introduction and the book concludes with problem sets.Whitman A. Richards is Professor in the Brain and Cognitive Science Department at MIT. A Bradford Book.
Author |
: Cristopher Moore |
Publisher |
: OUP Oxford |
Total Pages |
: 1498 |
Release |
: 2011-08-11 |
ISBN-10 |
: 9780191620805 |
ISBN-13 |
: 0191620807 |
Rating |
: 4/5 (05 Downloads) |
Synopsis The Nature of Computation by : Cristopher Moore
Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid and playful explanation of the P vs. NP problem, explaining why it is so fundamental, and so hard to resolve. They then lead the reader through the complexity of mazes and games; optimization in theory and practice; randomized algorithms, interactive proofs, and pseudorandomness; Markov chains and phase transitions; and the outer reaches of quantum computing. At every turn, they use a minimum of formalism, providing explanations that are both deep and accessible. The book is intended for graduate and undergraduate students, scientists from other areas who have long wanted to understand this subject, and experts who want to fall in love with this field all over again.
Author |
: Anthony Brabazon |
Publisher |
: Springer |
Total Pages |
: 554 |
Release |
: 2015-10-08 |
ISBN-10 |
: 9783662436318 |
ISBN-13 |
: 3662436310 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Natural Computing Algorithms by : Anthony Brabazon
The field of natural computing has been the focus of a substantial research effort in recent decades. One particular strand of this research concerns the development of computational algorithms using metaphorical inspiration from systems and phenomena that occur in the natural world. These naturally inspired computing algorithms have proven to be successful problem-solvers across domains as diverse as management science, bioinformatics, finance, marketing, engineering, architecture and design. This book is a comprehensive introduction to natural computing algorithms, suitable for academic and industrial researchers and for undergraduate and graduate courses on natural computing in computer science, engineering and management science.
Author |
: Harry J. Paarsch |
Publisher |
: MIT Press |
Total Pages |
: 777 |
Release |
: 2016-05-06 |
ISBN-10 |
: 9780262333993 |
ISBN-13 |
: 0262333996 |
Rating |
: 4/5 (93 Downloads) |
Synopsis A Gentle Introduction to Effective Computing in Quantitative Research by : Harry J. Paarsch
A practical guide to using modern software effectively in quantitative research in the social and natural sciences. This book offers a practical guide to the computational methods at the heart of most modern quantitative research. It will be essential reading for research assistants needing hands-on experience; students entering PhD programs in business, economics, and other social or natural sciences; and those seeking quantitative jobs in industry. No background in computer science is assumed; a learner need only have a computer with access to the Internet. Using the example as its principal pedagogical device, the book offers tried-and-true prototypes that illustrate many important computational tasks required in quantitative research. The best way to use the book is to read it at the computer keyboard and learn by doing. The book begins by introducing basic skills: how to use the operating system, how to organize data, and how to complete simple programming tasks. For its demonstrations, the book uses a UNIX-based operating system and a set of free software tools: the scripting language Python for programming tasks; the database management system SQLite; and the freely available R for statistical computing and graphics. The book goes on to describe particular tasks: analyzing data, implementing commonly used numerical and simulation methods, and creating extensions to Python to reduce cycle time. Finally, the book describes the use of LaTeX, a document markup language and preparation system.
Author |
: Ian Goodfellow |
Publisher |
: MIT Press |
Total Pages |
: 801 |
Release |
: 2016-11-10 |
ISBN-10 |
: 9780262337373 |
ISBN-13 |
: 0262337371 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Deep Learning by : Ian Goodfellow
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Author |
: Avi Wigderson |
Publisher |
: Princeton University Press |
Total Pages |
: 434 |
Release |
: 2019-10-29 |
ISBN-10 |
: 9780691189130 |
ISBN-13 |
: 0691189137 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Mathematics and Computation by : Avi Wigderson
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Author |
: Geoffrey Hinton |
Publisher |
: MIT Press |
Total Pages |
: 420 |
Release |
: 1999-05-24 |
ISBN-10 |
: 026258168X |
ISBN-13 |
: 9780262581684 |
Rating |
: 4/5 (8X Downloads) |
Synopsis Unsupervised Learning by : Geoffrey Hinton
Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.