Mathematical Modeling in the Social and Life Sciences

Mathematical Modeling in the Social and Life Sciences
Author :
Publisher : John Wiley & Sons
Total Pages : 594
Release :
ISBN-10 : 9781118642696
ISBN-13 : 1118642694
Rating : 4/5 (96 Downloads)

Synopsis Mathematical Modeling in the Social and Life Sciences by : Michael Olinick

Olinick’s Mathematical Models in the Social and Life Sciences concentrates not on physical models, but on models found in biology, social science, and daily life. This text concentrates on a relatively small number of models to allow students to study them critically and in depth, and balances practice and theory in its approach. Each chapter concluded with suggested projects that encourage students to build their own models, and space is set aside for historical and biographical notes about the development of mathematical models.

Mathematical Modeling for the Life Sciences

Mathematical Modeling for the Life Sciences
Author :
Publisher : Springer Science & Business Media
Total Pages : 170
Release :
ISBN-10 : 9783540278771
ISBN-13 : 354027877X
Rating : 4/5 (71 Downloads)

Synopsis Mathematical Modeling for the Life Sciences by : Jacques Istas

Provides a wide range of mathematical models currently used in the life sciences Each model is thoroughly explained and illustrated by example Includes three appendices to allow for independent reading

Mathematical Models for Society and Biology

Mathematical Models for Society and Biology
Author :
Publisher : Academic Press
Total Pages : 281
Release :
ISBN-10 : 9780124046931
ISBN-13 : 0124046932
Rating : 4/5 (31 Downloads)

Synopsis Mathematical Models for Society and Biology by : Edward Beltrami

Mathematical Models for Society and Biology, 2e, is a useful resource for researchers, graduate students, and post-docs in the applied mathematics and life science fields. Mathematical modeling is one of the major subfields of mathematical biology. A mathematical model may be used to help explain a system, to study the effects of different components, and to make predictions about behavior. Mathematical Models for Society and Biology, 2e, draws on current issues to engagingly relate how to use mathematics to gain insight into problems in biology and contemporary society. For this new edition, author Edward Beltrami uses mathematical models that are simple, transparent, and verifiable. Also new to this edition is an introduction to mathematical notions that every quantitative scientist in the biological and social sciences should know. Additionally, each chapter now includes a detailed discussion on how to formulate a reasonable model to gain insight into the specific question that has been introduced. - Offers 40% more content – 5 new chapters in addition to revisions to existing chapters - Accessible for quick self study as well as a resource for courses in molecular biology, biochemistry, embryology and cell biology, medicine, ecology and evolution, bio-mathematics, and applied math in general - Features expanded appendices with an extensive list of references, solutions to selected exercises in the book, and further discussion of various mathematical methods introduced in the book

Modeling Life

Modeling Life
Author :
Publisher : Springer
Total Pages : 456
Release :
ISBN-10 : 9783319597317
ISBN-13 : 3319597310
Rating : 4/5 (17 Downloads)

Synopsis Modeling Life by : Alan Garfinkel

This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?

Modeling and Simulation in Medicine and the Life Sciences

Modeling and Simulation in Medicine and the Life Sciences
Author :
Publisher : Springer Science & Business Media
Total Pages : 362
Release :
ISBN-10 : 9780387215716
ISBN-13 : 0387215719
Rating : 4/5 (16 Downloads)

Synopsis Modeling and Simulation in Medicine and the Life Sciences by : Frank C. Hoppensteadt

The result of lectures given by the authors at New York University, the University of Utah, and Michigan State University, the material is written for students who have had only one term of calculus, but it contains material that can be used in modeling courses in applied mathematics at all levels through early graduate courses. Numerous exercises are given as well as solutions to selected exercises, so as to lead readers to discover interesting extensions of that material. Throughout, illustrations depict physiological processes, population biology phenomena, corresponding models, and the results of computer simulations. Topics covered range from population phenomena to demographics, genetics, epidemics and dispersal; in physiological processes, including the circulation, gas exchange in the lungs, control of cell volume, the renal counter-current multiplier mechanism, and muscle mechanics; to mechanisms of neural control. Each chapter is graded in difficulty, so a reading of the first parts of each provides an elementary introduction to the processes and their models.

Calculus for the Life Sciences

Calculus for the Life Sciences
Author :
Publisher : MAA Press
Total Pages : 713
Release :
ISBN-10 : 1614446156
ISBN-13 : 9781614446156
Rating : 4/5 (56 Downloads)

Synopsis Calculus for the Life Sciences by : James L. Cornette

Freshman and sophomore life sciences students respond well to the modeling approach to calculus, difference equations, and differential equations presented in this book. Examples of population dynamics, pharmacokinetics, and biologically relevant physical processes are introduced in Chapter 1, and these and other life sciences topics are developed throughout the text. The students should have studied algebra, geometry, and trigonometry, but may be life sciences students because they have not enjoyed their previous mathematics courses.

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling
Author :
Publisher : Courier Corporation
Total Pages : 273
Release :
ISBN-10 : 9780486137124
ISBN-13 : 0486137120
Rating : 4/5 (24 Downloads)

Synopsis An Introduction to Mathematical Modeling by : Edward A. Bender

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.

Mathematical Modeling in Systems Biology

Mathematical Modeling in Systems Biology
Author :
Publisher : MIT Press
Total Pages : 423
Release :
ISBN-10 : 9780262545822
ISBN-13 : 0262545829
Rating : 4/5 (22 Downloads)

Synopsis Mathematical Modeling in Systems Biology by : Brian P. Ingalls

An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities

Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities
Author :
Publisher : Academic Press
Total Pages : 260
Release :
ISBN-10 : 9780128195956
ISBN-13 : 0128195959
Rating : 4/5 (56 Downloads)

Synopsis Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities by : Rebecca Sanft

Exploring Mathematical Modeling in Biology through Case Studies and Experimental Activities provides supporting materials for courses taken by students majoring in mathematics, computer science or in the life sciences. The book's cases and lab exercises focus on hypothesis testing and model development in the context of real data. The supporting mathematical, coding and biological background permit readers to explore a problem, understand assumptions, and the meaning of their results. The experiential components provide hands-on learning both in the lab and on the computer. As a beginning text in modeling, readers will learn to value the approach and apply competencies in other settings. Included case studies focus on building a model to solve a particular biological problem from concept and translation into a mathematical form, to validating the parameters, testing the quality of the model and finally interpreting the outcome in biological terms. The book also shows how particular mathematical approaches are adapted to a variety of problems at multiple biological scales. Finally, the labs bring the biological problems and the practical issues of collecting data to actually test the model and/or adapting the mathematics to the data that can be collected.