An Introduction to Laplace Transforms and Fourier Series

An Introduction to Laplace Transforms and Fourier Series
Author :
Publisher : Springer Science & Business Media
Total Pages : 257
Release :
ISBN-10 : 9781447105053
ISBN-13 : 1447105052
Rating : 4/5 (53 Downloads)

Synopsis An Introduction to Laplace Transforms and Fourier Series by : P.P.G. Dyke

This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.

An Introduction to Laplace Transforms and Fourier Series

An Introduction to Laplace Transforms and Fourier Series
Author :
Publisher : Springer Science & Business Media
Total Pages : 266
Release :
ISBN-10 : 1852330155
ISBN-13 : 9781852330156
Rating : 4/5 (55 Downloads)

Synopsis An Introduction to Laplace Transforms and Fourier Series by : Phil Dyke

This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.

Fourier and Laplace Transforms

Fourier and Laplace Transforms
Author :
Publisher : Cambridge University Press
Total Pages : 468
Release :
ISBN-10 : 0521534410
ISBN-13 : 9780521534413
Rating : 4/5 (10 Downloads)

Synopsis Fourier and Laplace Transforms by :

This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.

An Introduction to Fourier Analysis

An Introduction to Fourier Analysis
Author :
Publisher : CRC Press
Total Pages : 402
Release :
ISBN-10 : 9781498773713
ISBN-13 : 1498773710
Rating : 4/5 (13 Downloads)

Synopsis An Introduction to Fourier Analysis by : Russell L. Herman

This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: • Convergence and summation of infinite series • Representation of functions by infinite series • Trigonometric and Generalized Fourier series • Legendre, Bessel, gamma, and delta functions • Complex numbers and functions • Analytic functions and integration in the complex plane • Fourier and Laplace transforms. • The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.

Fourier Transforms

Fourier Transforms
Author :
Publisher : Courier Corporation
Total Pages : 564
Release :
ISBN-10 : 0486685225
ISBN-13 : 9780486685229
Rating : 4/5 (25 Downloads)

Synopsis Fourier Transforms by : Ian Naismith Sneddon

Focusing on applications of Fourier transforms and related topics rather than theory, this accessible treatment is suitable for students and researchers interested in boundary value problems of physics and engineering. 1951 edition.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author :
Publisher : Cambridge University Press
Total Pages : 615
Release :
ISBN-10 : 9781009098489
ISBN-13 : 1009098489
Rating : 4/5 (89 Downloads)

Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

An Introduction to Fourier Series and Integrals

An Introduction to Fourier Series and Integrals
Author :
Publisher : Courier Corporation
Total Pages : 116
Release :
ISBN-10 : 9780486151793
ISBN-13 : 0486151794
Rating : 4/5 (93 Downloads)

Synopsis An Introduction to Fourier Series and Integrals by : Robert T. Seeley

A compact, sophomore-to-senior-level guide, Dr. Seeley's text introduces Fourier series in the way that Joseph Fourier himself used them: as solutions of the heat equation in a disk. Emphasizing the relationship between physics and mathematics, Dr. Seeley focuses on results of greatest significance to modern readers. Starting with a physical problem, Dr. Seeley sets up and analyzes the mathematical modes, establishes the principal properties, and then proceeds to apply these results and methods to new situations. The chapter on Fourier transforms derives analogs of the results obtained for Fourier series, which the author applies to the analysis of a problem of heat conduction. Numerous computational and theoretical problems appear throughout the text.

Fourier Series, Fourier Transform and Their Applications to Mathematical Physics

Fourier Series, Fourier Transform and Their Applications to Mathematical Physics
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3319879855
ISBN-13 : 9783319879857
Rating : 4/5 (55 Downloads)

Synopsis Fourier Series, Fourier Transform and Their Applications to Mathematical Physics by : Valery Serov

This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences. Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing. The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations. The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory of partial differential equations. Complete with nearly 250 exercises throughout, this text is intended for graduate level students and researchers in the mathematical sciences and engineering.

A Student's Guide to Fourier Transforms

A Student's Guide to Fourier Transforms
Author :
Publisher : Cambridge University Press
Total Pages : 156
Release :
ISBN-10 : 0521004284
ISBN-13 : 9780521004282
Rating : 4/5 (84 Downloads)

Synopsis A Student's Guide to Fourier Transforms by : John Francis James

Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science.