Introduction to Linear Algebra and Differential Equations

Introduction to Linear Algebra and Differential Equations
Author :
Publisher : Courier Corporation
Total Pages : 442
Release :
ISBN-10 : 9780486158310
ISBN-13 : 0486158314
Rating : 4/5 (10 Downloads)

Synopsis Introduction to Linear Algebra and Differential Equations by : John W. Dettman

Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.

An Introduction to Differential Equations and Their Applications

An Introduction to Differential Equations and Their Applications
Author :
Publisher : Courier Corporation
Total Pages : 642
Release :
ISBN-10 : 9780486135137
ISBN-13 : 0486135136
Rating : 4/5 (37 Downloads)

Synopsis An Introduction to Differential Equations and Their Applications by : Stanley J. Farlow

This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

Introduction to Differential Equations: Second Edition

Introduction to Differential Equations: Second Edition
Author :
Publisher : American Mathematical Soc.
Total Pages : 388
Release :
ISBN-10 : 9781470467623
ISBN-13 : 1470467623
Rating : 4/5 (23 Downloads)

Synopsis Introduction to Differential Equations: Second Edition by : Michael E. Taylor

This text introduces students to the theory and practice of differential equations, which are fundamental to the mathematical formulation of problems in physics, chemistry, biology, economics, and other sciences. The book is ideally suited for undergraduate or beginning graduate students in mathematics, and will also be useful for students in the physical sciences and engineering who have already taken a three-course calculus sequence. This second edition incorporates much new material, including sections on the Laplace transform and the matrix Laplace transform, a section devoted to Bessel's equation, and sections on applications of variational methods to geodesics and to rigid body motion. There is also a more complete treatment of the Runge-Kutta scheme, as well as numerous additions and improvements to the original text. Students finishing this book will be well prepare

Introduction to Ordinary Differential Equations

Introduction to Ordinary Differential Equations
Author :
Publisher : Academic Press
Total Pages : 444
Release :
ISBN-10 : 9781483226224
ISBN-13 : 1483226220
Rating : 4/5 (24 Downloads)

Synopsis Introduction to Ordinary Differential Equations by : Albert L. Rabenstein

Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.

Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 446
Release :
ISBN-10 : 9783642557507
ISBN-13 : 3642557503
Rating : 4/5 (07 Downloads)

Synopsis Galois Theory of Linear Differential Equations by : Marius van der Put

From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews

Asymptotic Differential Algebra and Model Theory of Transseries

Asymptotic Differential Algebra and Model Theory of Transseries
Author :
Publisher : Princeton University Press
Total Pages : 873
Release :
ISBN-10 : 9780691175430
ISBN-13 : 0691175438
Rating : 4/5 (30 Downloads)

Synopsis Asymptotic Differential Algebra and Model Theory of Transseries by : Matthias Aschenbrenner

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 447
Release :
ISBN-10 : 9780387216874
ISBN-13 : 0387216871
Rating : 4/5 (74 Downloads)

Synopsis An Introduction to Partial Differential Equations by : Michael Renardy

Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.

Lectures on Differential Galois Theory

Lectures on Differential Galois Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 119
Release :
ISBN-10 : 9780821870044
ISBN-13 : 0821870041
Rating : 4/5 (44 Downloads)

Synopsis Lectures on Differential Galois Theory by : Andy R. Magid

Differential Galois theory studies solutions of differential equations over a differential base field. In much the same way that ordinary Galois theory is the theory of field extensions generated by solutions of (one variable) polynomial equations, differential Galois theory looks at the nature of the differential field extension generated by the solution of differential equations. An additional feature is that the corresponding differential Galois groups (of automorphisms of the extension fixing the base and commuting with the derivation) are algebraic groups. This book deals with the differential Galois theory of linear homogeneous differential equations, whose differential Galois groups are algebraic matrix groups. In addition to providing a convenient path to Galois theory, this approach also leads to the constructive solution of the inverse problem of differential Galois theory for various classes of algebraic groups. Providing a self-contained development and many explicit examples, this book provides a unique approach to differential Galois theory and is suitable as a textbook at the advanced graduate level.

Differential Forms in Algebraic Topology

Differential Forms in Algebraic Topology
Author :
Publisher : Springer Science & Business Media
Total Pages : 319
Release :
ISBN-10 : 9781475739510
ISBN-13 : 1475739516
Rating : 4/5 (10 Downloads)

Synopsis Differential Forms in Algebraic Topology by : Raoul Bott

Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.