An Introduction to Continuous-Time Stochastic Processes

An Introduction to Continuous-Time Stochastic Processes
Author :
Publisher : Springer Science & Business Media
Total Pages : 348
Release :
ISBN-10 : 9780817644284
ISBN-13 : 0817644288
Rating : 4/5 (84 Downloads)

Synopsis An Introduction to Continuous-Time Stochastic Processes by : Vincenzo Capasso

This concisely written book is a rigorous and self-contained introduction to the theory of continuous-time stochastic processes. Balancing theory and applications, the authors use stochastic methods and concrete examples to model real-world problems from engineering, biomathematics, biotechnology, and finance. Suitable as a textbook for graduate or advanced undergraduate courses, the work may also be used for self-study or as a reference. The book will be of interest to students, pure and applied mathematicians, and researchers or practitioners in mathematical finance, biomathematics, physics, and engineering.

Continuous Time Markov Processes

Continuous Time Markov Processes
Author :
Publisher : American Mathematical Soc.
Total Pages : 290
Release :
ISBN-10 : 9780821849491
ISBN-13 : 0821849492
Rating : 4/5 (91 Downloads)

Synopsis Continuous Time Markov Processes by : Thomas Milton Liggett

Markov processes are among the most important stochastic processes for both theory and applications. This book develops the general theory of these processes, and applies this theory to various special examples.

Stochastic Control in Discrete and Continuous Time

Stochastic Control in Discrete and Continuous Time
Author :
Publisher : Springer Science & Business Media
Total Pages : 299
Release :
ISBN-10 : 9780387766164
ISBN-13 : 0387766162
Rating : 4/5 (64 Downloads)

Synopsis Stochastic Control in Discrete and Continuous Time by : Atle Seierstad

This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.

Introduction to Stochastic Processes

Introduction to Stochastic Processes
Author :
Publisher : Courier Corporation
Total Pages : 418
Release :
ISBN-10 : 9780486276328
ISBN-13 : 0486276325
Rating : 4/5 (28 Downloads)

Synopsis Introduction to Stochastic Processes by : Erhan Cinlar

Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

Stochastic Processes

Stochastic Processes
Author :
Publisher : CRC Press
Total Pages : 255
Release :
ISBN-10 : 9781498778121
ISBN-13 : 1498778127
Rating : 4/5 (21 Downloads)

Synopsis Stochastic Processes by : Peter Watts Jones

Based on a well-established and popular course taught by the authors over many years, Stochastic Processes: An Introduction, Third Edition, discusses the modelling and analysis of random experiments, where processes evolve over time. The text begins with a review of relevant fundamental probability. It then covers gambling problems, random walks, and Markov chains. The authors go on to discuss random processes continuous in time, including Poisson, birth and death processes, and general population models, and present an extended discussion on the analysis of associated stationary processes in queues. The book also explores reliability and other random processes, such as branching, martingales, and simple epidemics. A new chapter describing Brownian motion, where the outcomes are continuously observed over continuous time, is included. Further applications, worked examples and problems, and biographical details have been added to this edition. Much of the text has been reworked. The appendix contains key results in probability for reference. This concise, updated book makes the material accessible, highlighting simple applications and examples. A solutions manual with fully worked answers of all end-of-chapter problems, and Mathematica® and R programs illustrating many processes discussed in the book, can be downloaded from crcpress.com.

An Introduction to Continuous-Time Stochastic Processes

An Introduction to Continuous-Time Stochastic Processes
Author :
Publisher : Birkhäuser
Total Pages : 489
Release :
ISBN-10 : 9781493927579
ISBN-13 : 1493927574
Rating : 4/5 (79 Downloads)

Synopsis An Introduction to Continuous-Time Stochastic Processes by : Vincenzo Capasso

This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: Markov processes Stochastic differential equations Arbitrage-free markets and financial derivatives Insurance risk Population dynamics, and epidemics Agent-based models New to the Third Edition: Infinitely divisible distributions Random measures Levy processes Fractional Brownian motion Ergodic theory Karhunen-Loeve expansion Additional applications Additional exercises Smoluchowski approximation of Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Edition will be of interest to a broad audience of students, pure and applied mathematicians, and researchers and practitioners in mathematical finance, biomathematics, biotechnology, and engineering. Suitable as a textbook for graduate or undergraduate courses, as well as European Masters courses (according to the two-year-long second cycle of the “Bologna Scheme”), the work may also be used for self-study or as a reference. Prerequisites include knowledge of calculus and some analysis; exposure to probability would be helpful but not required since the necessary fundamentals of measure and integration are provided. From reviews of previous editions: "The book is ... an account of fundamental concepts as they appear in relevant modern applications and literature. ... The book addresses three main groups: first, mathematicians working in a different field; second, other scientists and professionals from a business or academic background; third, graduate or advanced undergraduate students of a quantitative subject related to stochastic theory and/or applications." -Zentralblatt MATH

Continuous-Time Markov Chains and Applications

Continuous-Time Markov Chains and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 442
Release :
ISBN-10 : 9781461443469
ISBN-13 : 1461443466
Rating : 4/5 (69 Downloads)

Synopsis Continuous-Time Markov Chains and Applications by : G. George Yin

This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.

Introduction to Stochastic Processes with R

Introduction to Stochastic Processes with R
Author :
Publisher : John Wiley & Sons
Total Pages : 504
Release :
ISBN-10 : 9781118740651
ISBN-13 : 1118740653
Rating : 4/5 (51 Downloads)

Synopsis Introduction to Stochastic Processes with R by : Robert P. Dobrow

An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.

Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time
Author :
Publisher : Springer Science & Business Media
Total Pages : 480
Release :
ISBN-10 : 9781461300076
ISBN-13 : 146130007X
Rating : 4/5 (76 Downloads)

Synopsis Numerical Methods for Stochastic Control Problems in Continuous Time by : Harold Kushner

Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.

Introduction To Stochastic Processes

Introduction To Stochastic Processes
Author :
Publisher : World Scientific
Total Pages : 245
Release :
ISBN-10 : 9789814740326
ISBN-13 : 9814740322
Rating : 4/5 (26 Downloads)

Synopsis Introduction To Stochastic Processes by : Mu-fa Chen

The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.