Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Fixed-Point Algorithms for Inverse Problems in Science and Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 409
Release :
ISBN-10 : 9781441995698
ISBN-13 : 1441995692
Rating : 4/5 (98 Downloads)

Synopsis Fixed-Point Algorithms for Inverse Problems in Science and Engineering by : Heinz H. Bauschke

"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.

Algorithms for Solving Common Fixed Point Problems

Algorithms for Solving Common Fixed Point Problems
Author :
Publisher : Springer
Total Pages : 320
Release :
ISBN-10 : 9783319774374
ISBN-13 : 3319774379
Rating : 4/5 (74 Downloads)

Synopsis Algorithms for Solving Common Fixed Point Problems by : Alexander J. Zaslavski

This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.

Optimization on Solution Sets of Common Fixed Point Problems

Optimization on Solution Sets of Common Fixed Point Problems
Author :
Publisher : Springer Nature
Total Pages : 434
Release :
ISBN-10 : 9783030788490
ISBN-13 : 3030788490
Rating : 4/5 (90 Downloads)

Synopsis Optimization on Solution Sets of Common Fixed Point Problems by : Alexander J. Zaslavski

This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.

Approximate Solutions of Common Fixed-Point Problems

Approximate Solutions of Common Fixed-Point Problems
Author :
Publisher : Springer
Total Pages : 457
Release :
ISBN-10 : 9783319332550
ISBN-13 : 3319332554
Rating : 4/5 (50 Downloads)

Synopsis Approximate Solutions of Common Fixed-Point Problems by : Alexander J. Zaslavski

This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space“/p> · dynamic string-averaging version of the proximal algorithm · common fixed point problems in metric spaces · common fixed point problems in the spaces with distances of the Bregman type · a proximal algorithm for finding a common zero of a family of maximal monotone operators · subgradient projections algorithms for convex feasibility problems in Hilbert spaces

Fixed Point Theory and Applications

Fixed Point Theory and Applications
Author :
Publisher : Cambridge University Press
Total Pages : 182
Release :
ISBN-10 : 9781139433792
ISBN-13 : 1139433792
Rating : 4/5 (92 Downloads)

Synopsis Fixed Point Theory and Applications by : Ravi P. Agarwal

This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.

Topics in Metric Fixed Point Theory

Topics in Metric Fixed Point Theory
Author :
Publisher : Cambridge University Press
Total Pages : 258
Release :
ISBN-10 : 0521382890
ISBN-13 : 9780521382892
Rating : 4/5 (90 Downloads)

Synopsis Topics in Metric Fixed Point Theory by : Kazimierz Goebel

Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.

Fixed Point Theory and Graph Theory

Fixed Point Theory and Graph Theory
Author :
Publisher : Academic Press
Total Pages : 444
Release :
ISBN-10 : 9780128043653
ISBN-13 : 0128043652
Rating : 4/5 (53 Downloads)

Synopsis Fixed Point Theory and Graph Theory by : Monther Alfuraidan

Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains. The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, namely, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets. - Introduces both metric fixed point and graph theory in terms of their disparate foundations and common application environments - Provides a unique integration of otherwise disparate domains that aids both students seeking to understand either area and researchers interested in establishing an integrated research approach - Emphasizes solution methods for fixed points in non-linear problems such as variational inequalities, split feasibility, and hierarchical variational inequality problems that is particularly appropriate for engineering and core science applications

Advances in Metric Fixed Point Theory and Applications

Advances in Metric Fixed Point Theory and Applications
Author :
Publisher : Springer Nature
Total Pages : 503
Release :
ISBN-10 : 9789813366473
ISBN-13 : 9813366478
Rating : 4/5 (73 Downloads)

Synopsis Advances in Metric Fixed Point Theory and Applications by : Yeol Je Cho

This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.

Advances in Swarm Intelligence

Advances in Swarm Intelligence
Author :
Publisher : Springer Nature
Total Pages : 553
Release :
ISBN-10 : 9783031096778
ISBN-13 : 3031096770
Rating : 4/5 (78 Downloads)

Synopsis Advances in Swarm Intelligence by : Ying Tan

This two-volume set LNCS 13344 and 13345 constitutes the proceedings of the 13th International Conference on Advances in Swarm Intelligence, ICSI 2022, which took place in Xi’an, China, in July 2022. The theme of this year’s conference was “Serving Life with Swarm Intelligence”. The 85 full papers presented were carefully reviewed and selected from 171 submissions. The papers of the first part cover topics such as: Swarm Intelligence and Nature-Inspired Computing; Swarm-based Computing Algorithms for Optimization; Particle Swarm Optimization; Ant Colony Optimization; Differential Evolution; Genetic Algorithm and Evolutionary Computation; Fireworks Algorithms; Brain Storm Optimization Algorithm; Bacterial Foraging Optimization Algorithm; DNA Computing Methods; Multi-Objective Optimization; Swarm Robotics and Multi-Agent System; UAV Cooperation and Control; Machine Learning; Data Mining; and Other Applications.