Algorithms And Data Structures
Download Algorithms And Data Structures full books in PDF, epub, and Kindle. Read online free Algorithms And Data Structures ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Marcello La Rocca |
Publisher |
: Simon and Schuster |
Total Pages |
: 768 |
Release |
: 2021-08-10 |
ISBN-10 |
: 9781638350224 |
ISBN-13 |
: 1638350221 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Advanced Algorithms and Data Structures by : Marcello La Rocca
Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. Summary As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don’t despair! Many of these “new” problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer. About the book Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You’ll discover cutting-edge approaches to a variety of tricky scenarios. You’ll even learn to design your own data structures for projects that require a custom solution. What's inside Build on basic data structures you already know Profile your algorithms to speed up application Store and query strings efficiently Distribute clustering algorithms with MapReduce Solve logistics problems using graphs and optimization algorithms About the reader For intermediate programmers. About the author Marcello La Rocca is a research scientist and a full-stack engineer. His focus is on optimization algorithms, genetic algorithms, machine learning, and quantum computing. Table of Contents 1 Introducing data structures PART 1 IMPROVING OVER BASIC DATA STRUCTURES 2 Improving priority queues: d-way heaps 3 Treaps: Using randomization to balance binary search trees 4 Bloom filters: Reducing the memory for tracking content 5 Disjoint sets: Sub-linear time processing 6 Trie, radix trie: Efficient string search 7 Use case: LRU cache PART 2 MULTIDEMENSIONAL QUERIES 8 Nearest neighbors search 9 K-d trees: Multidimensional data indexing 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval 11 Applications of nearest neighbor search 12 Clustering 13 Parallel clustering: MapReduce and canopy clustering PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER 14 An introduction to graphs: Finding paths of minimum distance 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections 16 Gradient descent: Optimization problems (not just) on graphs 17 Simulated annealing: Optimization beyond local minima 18 Genetic algorithms: Biologically inspired, fast-converging optimization
Author |
: Harry R. Lewis |
Publisher |
: Addison Wesley |
Total Pages |
: 536 |
Release |
: 1991 |
ISBN-10 |
: UOM:39015029274175 |
ISBN-13 |
: |
Rating |
: 4/5 (75 Downloads) |
Synopsis Data Structures & Their Algorithms by : Harry R. Lewis
Using only practically useful techniques, this book teaches methods for organizing, reorganizing, exploring, and retrieving data in digital computers, and the mathematical analysis of those techniques. The authors present analyses that are relatively brief and non-technical but illuminate the important performance characteristics of the algorithms. Data Structures and Their Algorithms covers algorithms, not the expression of algorithms in the syntax of particular programming languages. The authors have adopted a pseudocode notation that is readily understandable to programmers but has a simple syntax.
Author |
: Robert Endre Tarjan |
Publisher |
: SIAM |
Total Pages |
: 138 |
Release |
: 1983-01-01 |
ISBN-10 |
: 1611970261 |
ISBN-13 |
: 9781611970265 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Data Structures and Network Algorithms by : Robert Endre Tarjan
There has been an explosive growth in the field of combinatorial algorithms. These algorithms depend not only on results in combinatorics and especially in graph theory, but also on the development of new data structures and new techniques for analyzing algorithms. Four classical problems in network optimization are covered in detail, including a development of the data structures they use and an analysis of their running time. Data Structures and Network Algorithms attempts to provide the reader with both a practical understanding of the algorithms, described to facilitate their easy implementation, and an appreciation of the depth and beauty of the field of graph algorithms.
Author |
: Bradley N. Miller |
Publisher |
: Franklin Beedle & Associates |
Total Pages |
: 0 |
Release |
: 2011 |
ISBN-10 |
: 1590282574 |
ISBN-13 |
: 9781590282571 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Problem Solving with Algorithms and Data Structures Using Python by : Bradley N. Miller
Thes book has three key features : fundamental data structures and algorithms; algorithm analysis in terms of Big-O running time in introducied early and applied throught; pytohn is used to facilitates the success in using and mastering data strucutes and algorithms.
Author |
: Pat Morin |
Publisher |
: Athabasca University Press |
Total Pages |
: 336 |
Release |
: 2013 |
ISBN-10 |
: 9781927356388 |
ISBN-13 |
: 1927356385 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Open Data Structures by : Pat Morin
Introduction -- Array-based lists -- Linked lists -- Skiplists -- Hash tables -- Binary trees -- Random binary search trees -- Scapegoat trees -- Red-black trees -- Heaps -- Sorting algorithms -- Graphs -- Data structures for integers -- External memory searching.
Author |
: Jay Wengrow |
Publisher |
: Pragmatic Bookshelf |
Total Pages |
: 737 |
Release |
: 2020-08-10 |
ISBN-10 |
: 9781680508055 |
ISBN-13 |
: 1680508059 |
Rating |
: 4/5 (55 Downloads) |
Synopsis A Common-Sense Guide to Data Structures and Algorithms, Second Edition by : Jay Wengrow
Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today’s web and mobile apps. Take a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code, with examples in JavaScript, Python, and Ruby. This new and revised second edition features new chapters on recursion, dynamic programming, and using Big O in your daily work. Use Big O notation to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You’ll even encounter a single keyword that can give your code a turbo boost. Practice your new skills with exercises in every chapter, along with detailed solutions. Use these techniques today to make your code faster and more scalable.
Author |
: Michael T. Goodrich |
Publisher |
: Wiley Global Education |
Total Pages |
: 770 |
Release |
: 2013-06-17 |
ISBN-10 |
: 9781118476734 |
ISBN-13 |
: 1118476735 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Data Structures and Algorithms in Python by : Michael T. Goodrich
Based on the authors' market leading data structures books in Java and C++, this book offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for Python data structures. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++. Begins by discussing Python's conceptually simple syntax, which allows for a greater focus on concepts. Employs a consistent object-oriented viewpoint throughout the text. Presents each data structure using ADTs and their respective implementations and introduces important design patterns as a means to organize those implementations into classes, methods, and objects. Provides a thorough discussion on the analysis and design of fundamental data structures. Includes many helpful Python code examples, with source code provided on the website. Uses illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Provides hundreds of exercises that promote creativity, help readers learn how to think like programmers, and reinforce important concepts. Contains many Python-code and pseudo-code fragments, and hundreds of exercises, which are divided into roughly 40% reinforcement exercises, 40% creativity exercises, and 20% programming projects.
Author |
: Thomas A. Standish |
Publisher |
: Pearson |
Total Pages |
: 778 |
Release |
: 1995 |
ISBN-10 |
: STANFORD:36105009806980 |
ISBN-13 |
: |
Rating |
: 4/5 (80 Downloads) |
Synopsis Data Structures, Algorithms, and Software Principles in C by : Thomas A. Standish
Using C, this book develops the concepts and theory of data structures and algorithm analysis in a gradual, step-by-step manner, proceeding from concrete examples to abstract principles. Standish covers a wide range of both traditional and contemporary software engineering topics. The text also includes an introduction to object-oriented programming using C++. By introducing recurring themes such as levels of abstraction, recursion, efficiency, representation and trade-offs, the author unifies the material throughout. Mathematical foundations can be incorporated at a variety of depths, allowing the appropriate amount of math for each user.
Author |
: Kurt Mehlhorn |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 300 |
Release |
: 2008-05-27 |
ISBN-10 |
: 9783540779780 |
ISBN-13 |
: 3540779787 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Algorithms and Data Structures by : Kurt Mehlhorn
Algorithms are at the heart of every nontrivial computer application, and algorithmics is a modern and active area of computer science. Every computer scientist and every professional programmer should know about the basic algorithmic toolbox: structures that allow efficient organization and retrieval of data, frequently used algorithms, and basic techniques for modeling, understanding and solving algorithmic problems. This book is a concise introduction addressed to students and professionals familiar with programming and basic mathematical language. Individual chapters cover arrays and linked lists, hash tables and associative arrays, sorting and selection, priority queues, sorted sequences, graph representation, graph traversal, shortest paths, minimum spanning trees, and optimization. The algorithms are presented in a modern way, with explicitly formulated invariants, and comment on recent trends such as algorithm engineering, memory hierarchies, algorithm libraries and certifying algorithms. The authors use pictures, words and high-level pseudocode to explain the algorithms, and then they present more detail on efficient implementations using real programming languages like C++ and Java. The authors have extensive experience teaching these subjects to undergraduates and graduates, and they offer a clear presentation, with examples, pictures, informal explanations, exercises, and some linkage to the real world. Most chapters have the same basic structure: a motivation for the problem, comments on the most important applications, and then simple solutions presented as informally as possible and as formally as necessary. For the more advanced issues, this approach leads to a more mathematical treatment, including some theorems and proofs. Finally, each chapter concludes with a section on further findings, providing views on the state of research, generalizations and advanced solutions.
Author |
: Dzejla Medjedovic |
Publisher |
: Simon and Schuster |
Total Pages |
: 302 |
Release |
: 2022-08-16 |
ISBN-10 |
: 9781638356561 |
ISBN-13 |
: 1638356564 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Algorithms and Data Structures for Massive Datasets by : Dzejla Medjedovic
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting