Algebraic Theory of Numbers. (AM-1), Volume 1

Algebraic Theory of Numbers. (AM-1), Volume 1
Author :
Publisher : Princeton University Press
Total Pages : 240
Release :
ISBN-10 : 9781400882809
ISBN-13 : 140088280X
Rating : 4/5 (09 Downloads)

Synopsis Algebraic Theory of Numbers. (AM-1), Volume 1 by : Hermann Weyl

In this, one of the first books to appear in English on the theory of numbers, the eminent mathematician Hermann Weyl explores fundamental concepts in arithmetic. The book begins with the definitions and properties of algebraic fields, which are relied upon throughout. The theory of divisibility is then discussed, from an axiomatic viewpoint, rather than by the use of ideals. There follows an introduction to p-adic numbers and their uses, which are so important in modern number theory, and the book culminates with an extensive examination of algebraic number fields. Weyl's own modest hope, that the work "will be of some use," has more than been fulfilled, for the book's clarity, succinctness, and importance rank it as a masterpiece of mathematical exposition.

A Brief Guide to Algebraic Number Theory

A Brief Guide to Algebraic Number Theory
Author :
Publisher : Cambridge University Press
Total Pages : 164
Release :
ISBN-10 : 0521004233
ISBN-13 : 9780521004237
Rating : 4/5 (33 Downloads)

Synopsis A Brief Guide to Algebraic Number Theory by : H. P. F. Swinnerton-Dyer

Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.

Classical Theory of Algebraic Numbers

Classical Theory of Algebraic Numbers
Author :
Publisher : Springer Science & Business Media
Total Pages : 676
Release :
ISBN-10 : 9780387216904
ISBN-13 : 0387216901
Rating : 4/5 (04 Downloads)

Synopsis Classical Theory of Algebraic Numbers by : Paulo Ribenboim

The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.

Cohomology of Number Fields

Cohomology of Number Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 831
Release :
ISBN-10 : 9783540378891
ISBN-13 : 3540378898
Rating : 4/5 (91 Downloads)

Synopsis Cohomology of Number Fields by : Jürgen Neukirch

This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.

Supersingular P-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas

Supersingular P-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas
Author :
Publisher : Princeton University Press
Total Pages : 280
Release :
ISBN-10 : 9780691216478
ISBN-13 : 0691216479
Rating : 4/5 (78 Downloads)

Synopsis Supersingular P-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas by : Daniel Kriz

A groundbreaking contribution to number theory that unifies classical and modern results This book develops a new theory of p-adic modular forms on modular curves, extending Katz's classical theory to the supersingular locus. The main novelty is to move to infinite level and extend coefficients to period sheaves coming from relative p-adic Hodge theory. This makes it possible to trivialize the Hodge bundle on the infinite-level modular curve by a "canonical differential" that restricts to the Katz canonical differential on the ordinary Igusa tower. Daniel Kriz defines generalized p-adic modular forms as sections of relative period sheaves transforming under the Galois group of the modular curve by weight characters. He introduces the fundamental de Rham period, measuring the position of the Hodge filtration in relative de Rham cohomology. This period can be viewed as a counterpart to Scholze's Hodge-Tate period, and the two periods satisfy a Legendre-type relation. Using these periods, Kriz constructs splittings of the Hodge filtration on the infinite-level modular curve, defining p-adic Maass-Shimura operators that act on generalized p-adic modular forms as weight-raising operators. Through analysis of the p-adic properties of these Maass-Shimura operators, he constructs new p-adic L-functions interpolating central critical Rankin-Selberg L-values, giving analogues of the p-adic L-functions of Katz, Bertolini-Darmon-Prasanna, and Liu-Zhang-Zhang for imaginary quadratic fields in which p is inert or ramified. These p-adic L-functions yield new p-adic Waldspurger formulas at special values.

Arithmetic and Geometry

Arithmetic and Geometry
Author :
Publisher : Princeton University Press
Total Pages : 186
Release :
ISBN-10 : 9780691193786
ISBN-13 : 0691193789
Rating : 4/5 (86 Downloads)

Synopsis Arithmetic and Geometry by : Gisbert Wüstholz

"Lectures by outstanding scholars on progress made in the past ten years in the most progressive areas of arithmetic and geometry - primarily arithmetic geometry"--

Algebraic Theory of Numbers

Algebraic Theory of Numbers
Author :
Publisher : Dover Books on Mathematics
Total Pages : 0
Release :
ISBN-10 : 0486466663
ISBN-13 : 9780486466668
Rating : 4/5 (63 Downloads)

Synopsis Algebraic Theory of Numbers by : Pierre Samuel

Algebraic number theory introduces students to new algebraic notions as well as related concepts: groups, rings, fields, ideals, quotient rings, and quotient fields. This text covers the basics, from divisibility theory in principal ideal domains to the unit theorem, finiteness of the class number, and Hilbert ramification theory. 1970 edition.

Algebraic Number Theory

Algebraic Number Theory
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3642084737
ISBN-13 : 9783642084737
Rating : 4/5 (37 Downloads)

Synopsis Algebraic Number Theory by : Jürgen Neukirch

This introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.

Mathematics across the Iron Curtain

Mathematics across the Iron Curtain
Author :
Publisher : American Mathematical Society
Total Pages : 457
Release :
ISBN-10 : 9781470414931
ISBN-13 : 1470414937
Rating : 4/5 (31 Downloads)

Synopsis Mathematics across the Iron Curtain by : Christopher Hollings

The theory of semigroups is a relatively young branch of mathematics, with most of the major results having appeared after the Second World War. This book describes the evolution of (algebraic) semigroup theory from its earliest origins to the establishment of a full-fledged theory. Semigroup theory might be termed `Cold War mathematics' because of the time during which it developed. There were thriving schools on both sides of the Iron Curtain, although the two sides were not always able to communicate with each other, or even gain access to the other's publications. A major theme of this book is the comparison of the approaches to the subject of mathematicians in East and West, and the study of the extent to which contact between the two sides was possible.