Algebraic Theory of Molecules

Algebraic Theory of Molecules
Author :
Publisher : Oxford University Press
Total Pages : 262
Release :
ISBN-10 : 9780195359732
ISBN-13 : 0195359739
Rating : 4/5 (32 Downloads)

Synopsis Algebraic Theory of Molecules by : F. Iachello

Algebraic Theory of Molecules presents a fresh look at the mathematics of wave functions that provide the theoretical underpinnings of molecular spectroscopy. Written by renowned authorities in the field, the book demonstrates the advantages of algebraic theory over the more conventional geometric approach to developing the formal quantum mechanics inherent in molecular spectroscopy. Many examples are provided that compare the algebraic and geometric methods, illustrating the relationship between the algebraic approach and current experiments. The authors develop their presentation from a basic level so as to enable newcomers to enter the field while providing enough details and concrete examples to serve as a reference for the expert. Chemical physicists, physical chemists, and spectroscopists will want to read this exciting new approach to molecular spectroscopy.

Algebraic Theory of Molecules

Algebraic Theory of Molecules
Author :
Publisher : Oxford University Press, USA
Total Pages : 262
Release :
ISBN-10 : 9780195080919
ISBN-13 : 0195080912
Rating : 4/5 (19 Downloads)

Synopsis Algebraic Theory of Molecules by : F. Iachello

Algebraic Theory of Molecules presents a fresh look at the mathematics of wave functions that provide the theoretical underpinnings of molecular spectroscopy. Written by renowned authorities in the field, the book demonstrates the advantages of algebraic theory over the more conventional geometric approach to developing the formal quantum mechanics inherent in molecular spectroscopy. Many examples are provided that compare the algebraic and geometric methods, illustrating the relationship between the algebraic approach and current experiments. The authors develop their presentation from a basic level so as to enable newcomers to enter the field while providing enough details and concrete examples to serve as a reference for the expert. Chemical physicists, physical chemists, and spectroscopists will want to read this exciting new approach to molecular spectroscopy.

Algebraic and Diagrammatic Methods in Many-Fermion Theory

Algebraic and Diagrammatic Methods in Many-Fermion Theory
Author :
Publisher : Courier Dover Publications
Total Pages : 418
Release :
ISBN-10 : 9780486837215
ISBN-13 : 0486837211
Rating : 4/5 (15 Downloads)

Synopsis Algebraic and Diagrammatic Methods in Many-Fermion Theory by : Frank E. Harris

This text on the use of electron correlation effects in the description of the electronic structure of atoms, molecules, and crystals is intended for graduate students in physical chemistry and physics. Modern theories of electronic structure and methods of incorporating electron correlation contributions are developed using a diagrammatic and algebraic formulation, and the methods developed in the text are illustrated with examples from molecular and solid state quantum mechanics. A brief Introduction is followed by chapters on operator algebra, the independent-particle model, occupation-number formalism, and diagrams. Additional topics include the configuration-interaction method, the many-body perturbation theory, and the coupled-cluster method.

Angular Momentum Theory for Diatomic Molecules

Angular Momentum Theory for Diatomic Molecules
Author :
Publisher : Elsevier
Total Pages : 251
Release :
ISBN-10 : 9780323159050
ISBN-13 : 0323159052
Rating : 4/5 (50 Downloads)

Synopsis Angular Momentum Theory for Diatomic Molecules by : Brain Judd

Angular Momentum Theory for Diatomic Molecules focuses on the application of angular momentum theory in describing the complex dynamical processes in molecules. The manuscript first offers information on tensor algebra and rotation group. Discussions focus on commutation relations, spherical and double tensors, rotations, coupling, reduced matrix elements, quaternions, combination theorem for Gegenbauer polynomials, and combination theorems for spherical harmonics. The book then takes a look at R(4) in physical systems and hydrogen molecular ion, including rigid rotator, reversed angular momentum, reduced matrix elements, spheroidal coordinates, and hydrogen atom in spheroidal coordinates. The publication examines expansions and free diatomic molecules. Topics include angular momentum, molecular frame, primitive energy spectrum, rotating oscillator and hydrogen atom, expressions for electric potentials, delta functions, and Neumann expansion. The manuscript also considers external fields and perturbations. The text is a dependable reference for readers interested in the application of angular momentum theory in identifying the dynamical processes going on in molecules.

New Methods in Computational Quantum Mechanics

New Methods in Computational Quantum Mechanics
Author :
Publisher : John Wiley & Sons
Total Pages : 812
Release :
ISBN-10 : 9780470142059
ISBN-13 : 0470142057
Rating : 4/5 (59 Downloads)

Synopsis New Methods in Computational Quantum Mechanics by : Ilya Prigogine

The use of quantum chemistry for the quantitative prediction of molecular properties has long been frustrated by the technical difficulty of carrying out the needed computations. In the last decade there have been substantial advances in the formalism and computer hardware needed to carry out accurate calculations of molecular properties efficiently. These advances have been sufficient to make quantum chemical calculations a reliable tool for the quantitative interpretation of chemical phenomena and a guide to laboratory experiments. However, the success of these recent developments in computational quantum chemistry is not well known outside the community of practitioners. In order to make the larger community of chemical physicists aware of the current state of the subject, this self-contained volume of Advances in Chemical Physics surveys a number of the recent accomplishments in computational quantum chemistry. This stand-alone work presents the cutting edge of research in computational quantum mechanics. Supplemented with more than 150 illustrations, it provides evaluations of a broad range of methods, including: * Quantum Monte Carlo methods in chemistry * Monte Carlo methods for real-time path integration * The Redfield equation in condensed-phase quantum dynamics * Path-integral centroid methods in quantum statistical mechanics and dynamics * Multiconfigurational perturbation theory-applications in electronic spectroscopy * Electronic structure calculations for molecules containing transition metals * And more Contributors to New Methods in Computational Quantum Mechanics KERSTIN ANDERSSON, Department of Theoretical Chemistry, Chemical Center, Sweden DAVID M. CEPERLEY, National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign, Illinois MICHAEL A. COLLINS, Research School of Chemistry, Australian National University, Canberra, Australia REINHOLD EGGER, Fakultät für Physik, Universität Freiburg, Freiburg, Germany ANTHONY K. FELTS, Department of Chemistry, Columbia University, New York RICHARD A. FRIESNER, Department of Chemistry, Columbia University, New York MARKUS P. FÜLSCHER, Department of Theoretical Chemistry, Chemical Center, Sweden K. M. HO, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa C. H. MAK, Department of Chemistry, University of Southern California, Los Angeles, California PER-ÅKE Malmqvist, Department of Theoretical Chemistry, Chemical Center, Sweden MANUELA MERCHán, Departamento de Química Física, Universitat de Valéncia, Spain LUBOS MITAS, National Center for Supercomputing Applications and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois STEFANO OSS, Dipartimento di Fisica, Università di Trento and Istituto Nazionale di Fisica della Materia, Unità di Trento, Italy KRISTINE PIERLOOT, Department of Chemistry, University of Leuven, Belgium W. THOMAS POLLARD, Department of Chemistry, Columbia University, New York BJÖRN O. ROOS, Department of Theoretical Chemistry, Chemical Center, Sweden LUIS SERRANO-ANDRÉS, Department of Theoretical Chemistry, Chemical Center, Sweden PER E. M. SIEGBAHN, Department of Physics, University of Stockholm, Stockholm, Sweden WALTER THIEL, Institut für Organische Chemie, Universität Zürich, Zürich, Switzerland GREGORY A. VOTH, Department of Chemistry, University of Pennsylvania, Pennsylvania C. Z. Wang, Ames Laboratory and Department of Physi

Statistical Modelling of Molecular Descriptors in QSAR/QSPR

Statistical Modelling of Molecular Descriptors in QSAR/QSPR
Author :
Publisher : John Wiley & Sons
Total Pages : 437
Release :
ISBN-10 : 9783527645015
ISBN-13 : 3527645012
Rating : 4/5 (15 Downloads)

Synopsis Statistical Modelling of Molecular Descriptors in QSAR/QSPR by : Matthias Dehmer

This handbook and ready reference presents a combination of statistical, information-theoretic, and data analysis methods to meet the challenge of designing empirical models involving molecular descriptors within bioinformatics. The topics range from investigating information processing in chemical and biological networks to studying statistical and information-theoretic techniques for analyzing chemical structures to employing data analysis and machine learning techniques for QSAR/QSPR. The high-profile international author and editor team ensures excellent coverage of the topic, making this a must-have for everyone working in chemoinformatics and structure-oriented drug design.

GROUP 24

GROUP 24
Author :
Publisher : CRC Press
Total Pages : 997
Release :
ISBN-10 : 9781482269079
ISBN-13 : 1482269074
Rating : 4/5 (79 Downloads)

Synopsis GROUP 24 by : J.P Gazeau

As a record of an international meeting devoted to the physical and mathematical aspects of group theory, GROUP 24: Physical and Mathematical Aspects of Symmetries provides an important selection of informative articles describing recent advances in the field. The applications of group theory presented in this book deal not only with the traditional fields of physics, but also include such disciplines as chemistry and biology. Plenary session contributions are represented by 18 longer articles, followed by nearly 200 shorter articles. The book also presents coherent states, wavelets, and applications and quantum group theory and integrable systems in two separate sections.

Fractals in Molecular Biophysics

Fractals in Molecular Biophysics
Author :
Publisher : Oxford University Press
Total Pages : 289
Release :
ISBN-10 : 9780195359183
ISBN-13 : 0195359186
Rating : 4/5 (83 Downloads)

Synopsis Fractals in Molecular Biophysics by : T. Gregory Dewey

Historically, science has sought to reduce complex problems to their simplest components, but more recently it has recognized the merit of studying complex phenomena in situ. Fractal geometry is one such appealing approach, and this book discusses its application to complex problems in molecular biophysics. The book provides a detailed, unified treatment of fractal aspects of protein and structure dynamics, fractal reaction kinetics in biochemical systems, sequence correlations in DNA and proteins, and descriptors of chaos in enzymatic systems. In an area that has been slow to acknowledge the use of fractals, this is an important addition to the literature, offering a glimpse of the wealth of possible applications to complex problems.

Molecular Orbital Calculations for Biological Systems

Molecular Orbital Calculations for Biological Systems
Author :
Publisher : Oxford University Press
Total Pages : 248
Release :
ISBN-10 : 9780195356847
ISBN-13 : 0195356845
Rating : 4/5 (47 Downloads)

Synopsis Molecular Orbital Calculations for Biological Systems by : Anne-Marie Sapse

Molecular Orbital Calculations for Biological Systems is a hands-on guide to computational quantum chemistry and its applications in organic chemistry, biochemistry, and molecular biology. With improvements in software, molecular modeling techniques are now becoming widely available; they are increasingly used to complement experimental results, saving significant amounts of lab time. Common applications include pharmaceutical research and development; for example, ab initio and semi-empirical methods are playing important roles in peptide investigations and in drug design. The opening chapters provide an introduction for the non-quantum chemist to the basic quantum chemistry methods, ab initio, semi-empirical, and density functionals, as well as to one of the main families of computer programs, the Gaussian series. The second part then describes current research which applies quantum chemistry methods to such biological systems as amino acids, peptides, and anti-cancer drugs. Throughout the authors seek to encourage biochemists to discover aspects of their own research which might benefit from computational work. They also show that the methods are accessible to researchers from a wide range of mathematical backgrounds. Combining concise introductions with practical advice, this volume will be an invaluable tool for research on biological systems.