Ai Powered Developer
Download Ai Powered Developer full books in PDF, epub, and Kindle. Read online free Ai Powered Developer ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Nathan Crocker |
Publisher |
: Simon and Schuster |
Total Pages |
: 373 |
Release |
: 2024-10-01 |
ISBN-10 |
: 9781638355717 |
ISBN-13 |
: 1638355711 |
Rating |
: 4/5 (17 Downloads) |
Synopsis AI-Powered Developer by : Nathan Crocker
Use groundbreaking generative AI tools to increase your productivity, efficiency, and code quality. AI coding tools like ChatGPT and GitHub Copilot are changing the way we write code and build software. AI-Powered Developer reveals the practical best practices you need to deliver reliable results with AI. It cuts through the hype, showcasing real-world examples of how these tools ease and enhance your everyday tasks, and make you more creative. In AI-Powered Developer you’ll discover how to get the most out of AI: • Harness AI to help you design and plan software • Use AI for code generation, debugging, and documentation • Improve your code quality assessments with the help of AI • Articulate complex problems to prompt an AI solution • Develop a continuous learning mindset that keeps you up to date • Adapt your development skills to almost any language AI coding tools give you a smart and reliable junior developer that’s fast and keen to help out with your every task and query. AI-Powered Developer helps you put your new assistant to work. You’ll learn to use AI for everything from writing boilerplate, to testing and quality assessment, managing infrastructure, delivering security, and even assisting with software design. About the technology Using AI tools like Copilot and ChatGPT is like hiring a super-smart and super-fast junior developer eager to take on anything from research to refactoring. Coding with AI can help you work faster, write better applications, and maybe do things that aren’t even possible with your current team. This book will show you how. About the book AI-Powered Developer: Build software with ChatGPT and Copilot teaches you in concrete detail how to maximize the impact of AI coding tools in real-world software development. In it, you’ll walk through a complete application, introducing AI into every step of the workflow. You’ll use ChatGPT and Copilot to generate code and ideas, make predictive suggestions, and develop a self-documenting application. You’ll also learn how AI can help test and explain your code. What's inside • Use AI to design and plan software • Code generation, debugging, and documentation • Improve code quality assessments • Work with unfamiliar programming languages About the reader For intermediate software developers. No AI experience necessary. About the author Nathan B. Crocker is Cofounder and CTO at Checker Corp. The technical editor on this book was Nicolai Nielsen. Table of Contents PART 1 1 Understanding large language models 2 Getting started with large language models PART 2 3 Designing software with ChatGPT 4 Building software with GitHub Copilot 5 Managing data with GitHub Copilot and Copilot Chat PART 3 6 Testing, assessing, and explaining with large language models PART 4 7 Coding infrastructure and managing deployments 8 Secure application development with ChatGPT 9 GPT-ing on the go A Setting up ChatGPT B Setting up GitHub Copilot C Setting up AWS CodeWhisperer
Author |
: Behram Irani |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 416 |
Release |
: 2024-08-30 |
ISBN-10 |
: 9781835081204 |
ISBN-13 |
: 1835081207 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Generative AI-Powered Assistant for Developers by : Behram Irani
Leverage Amazon Q Developer to boost productivity and maximize efficiency by accelerating software development life cycle tasks Key Features First book on the market to thoroughly explore all of Amazon Q Developer’s features Gain an understanding of Amazon Q Developer's capabilities across the software development life cycle through real-world examples Build apps with Amazon Q Developer by auto-generating code in various languages within supported IDEs Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMany developers face the challenge of managing repetitive tasks and maintaining productivity. This book will help you tackle both these challenges with Amazon Q Developer, a generative AI-powered assistant designed to optimize coding and streamline workflows. This book takes you through the setup and customization of Amazon Q Developer, demonstrating how to leverage its capabilities for auto-code generation, code explanation, and transformation across multiple IDEs and programming languages. You'll learn to use Amazon Q Developer to enhance coding experiences, generate accurate code references, and ensure security by scanning for vulnerabilities. The book also shows you how to use Amazon Q Developer for AWS-related tasks, including solution building, applying architecture best practices, and troubleshooting errors. Each chapter provides practical insights and step-by-step guidance to help you fully integrate this powerful tool into your development process. You’ll get to grips with effortless code implementation, explanation, transformation, and documentation, helping you create applications faster and improve your development experience. By the end of this book, you’ll have mastered Amazon Q Developer to accelerate your software development lifecycle, improve code quality, and build applications faster and more efficiently.What you will learn Understand the importance of generative AI-powered assistants in developers' daily work Enable Amazon Q Developer for IDEs and with AWS services to leverage code suggestions Customize Amazon Q Developer to align with organizational coding standards Utilize Amazon Q Developer for code explanation, transformation, and feature development Understand code references and scan for code security issues using Amazon Q Developer Accelerate building solutions and troubleshooting errors on AWS Who this book is for This book is for coders, software developers, application builders, data engineers, and technical resources using AWS services looking to leverage Amazon Q Developer's features to enhance productivity and accelerate business outcomes. Basic coding skills are needed to understand the concepts covered in this book.
Author |
: Ben Auffarth |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 459 |
Release |
: 2020-10-30 |
ISBN-10 |
: 9781789137965 |
ISBN-13 |
: 1789137969 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Artificial Intelligence with Python Cookbook by : Ben Auffarth
Work through practical recipes to learn how to solve complex machine learning and deep learning problems using Python Key FeaturesGet up and running with artificial intelligence in no time using hands-on problem-solving recipesExplore popular Python libraries and tools to build AI solutions for images, text, sounds, and imagesImplement NLP, reinforcement learning, deep learning, GANs, Monte-Carlo tree search, and much moreBook Description Artificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research. Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you’ll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you’ll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems. By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production. What you will learnImplement data preprocessing steps and optimize model hyperparametersDelve into representational learning with adversarial autoencodersUse active learning, recommenders, knowledge embedding, and SAT solversGet to grips with probabilistic modeling with TensorFlow probabilityRun object detection, text-to-speech conversion, and text and music generationApply swarm algorithms, multi-agent systems, and graph networksGo from proof of concept to production by deploying models as microservicesUnderstand how to use modern AI in practiceWho this book is for This AI machine learning book is for Python developers, data scientists, machine learning engineers, and deep learning practitioners who want to learn how to build artificial intelligence solutions with easy-to-follow recipes. You’ll also find this book useful if you’re looking for state-of-the-art solutions to perform different machine learning tasks in various use cases. Basic working knowledge of the Python programming language and machine learning concepts will help you to work with code effectively in this book.
Author |
: Yuki Hattori |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 284 |
Release |
: 2024-04-19 |
ISBN-10 |
: 9781835468685 |
ISBN-13 |
: 1835468683 |
Rating |
: 4/5 (85 Downloads) |
Synopsis DevOps Unleashed with Git and GitHub by : Yuki Hattori
Unlock the full potential of your team with Git mastery, seamless DevOps workflows, and the power of AI integration Key Features Gain a comprehensive understanding of Git, GitHub, and DevOps with practical implementation tips Embark on a holistic exploration of DevOps workflows, scaling, DevSecOps, and GitHub Copilot Discover the best practices for optimizing processes and team productivity Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionGit and GitHub are absolutely crucial for DevOps, playing a multifaceted role in streamlining the software development lifecycle and enabling smoother collaboration between development and operations teams. DevOps Unleashed with Git and GitHub enables you to harness the power of Git and GitHub to streamline workflows, drive collaboration, and fuel innovation. Authored by an expert from GitHub, the book starts by guiding you through Git fundamentals and delving into DevOps and the developer experience. As you progress, you’ll understand how to leverage GitHub's collaboration and automation features, and even use GitHub Copilot for enhanced productivity. You'll also learn how to bridge the DevOps gap, maintain code quality, and implement robust security measures. Additionally, hands-on exercises will equip you to elevate your developer experience, foster teamwork, and drive innovation at the speed of DevOps. By the end of this DevOps book, you’ll have mastered the Git fundamentals, conquered collaboration challenges, and unleashed the power of GitHub as you transform your DevOps workflows.What you will learn Master the fundamentals of Git and GitHub Unlock DevOps principles that drive automation, continuous integration and continuous deployment (CI/ CD), and monitoring Facilitate seamless cross-team collaboration Boost productivity using GitHub Actions Measure and improve development velocity Leverage the GitHub Copilot AI tool to elevate your developer experience Who this book is for If you’re aiming to enhance collaboration, productivity, and DevOps practices to enrich your development experience, this book is for you. Novice DevOps engineers will be able resolve their doubts surrounding Git and GitHub errors, while IT admins and system engineers will be able to effortlessly embrace DevOps principles with pragmatic insights. For infrastructure engineers looking to delve into cloud-based collaboration and optimal management practices, this book provides valuable knowledge to facilitate a seamless transition into the DevOps landscape.
Author |
: Yves Hilpisch |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 478 |
Release |
: 2020-10-14 |
ISBN-10 |
: 9781492055389 |
ISBN-13 |
: 1492055387 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Artificial Intelligence in Finance by : Yves Hilpisch
The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about
Author |
: Ian Millington |
Publisher |
: CRC Press |
Total Pages |
: 85 |
Release |
: 2021-11-15 |
ISBN-10 |
: 9781000475517 |
ISBN-13 |
: 1000475514 |
Rating |
: 4/5 (17 Downloads) |
Synopsis AI for Games by : Ian Millington
What is artificial intelligence? How is artificial intelligence used in game development? Game development lives in its own technical world. It has its own idioms, skills, and challenges. That’s one of the reasons games are so much fun to work on. Each game has its own rules, its own aesthetic, and its own trade-offs, and the hardware it will run on keeps changing. AI for Games is designed to help you understand one element of game development: artificial intelligence (AI).
Author |
: Murat Yilmaz |
Publisher |
: Springer Nature |
Total Pages |
: 469 |
Release |
: |
ISBN-10 |
: 9783031711398 |
ISBN-13 |
: 3031711394 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Systems, Software and Services Process Improvement by : Murat Yilmaz
Author |
: Laurence Moroney |
Publisher |
: O'Reilly Media |
Total Pages |
: 393 |
Release |
: 2020-10-01 |
ISBN-10 |
: 9781492078166 |
ISBN-13 |
: 1492078166 |
Rating |
: 4/5 (66 Downloads) |
Synopsis AI and Machine Learning for Coders by : Laurence Moroney
If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving
Author |
: Jeremy Kahn |
Publisher |
: Simon and Schuster |
Total Pages |
: 336 |
Release |
: 2024-07-09 |
ISBN-10 |
: 9781668053324 |
ISBN-13 |
: 1668053322 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Mastering AI by : Jeremy Kahn
A Fortune magazine journalist draws on his expertise and extensive contacts among the companies and scientists at the forefront of artificial intelligence to offer dramatic predictions of AI’s impact over the next decade, from reshaping our economy and the way we work, learn, and create to unknitting our social fabric, jeopardizing our democracy, and fundamentally altering the way we think. Within the next five years, Jeremy Kahn predicts, AI will disrupt almost every industry and enterprise, with vastly increased efficiency and productivity. It will restructure the workforce, making AI copilots a must for every knowledge worker. It will revamp education, meaning children around the world can have personal, portable tutors. It will revolutionize health care, making individualized, targeted pharmaceuticals more affordable. It will compel us to reimagine how we make art, compose music, and write and publish books. The potential of generative AI to extend our skills, talents, and creativity as humans is undeniably exciting and promising. But while this new technology has a bright future, it also casts a dark and fearful shadow. AI will provoke pervasive, disruptive, potentially devastating knock-on effects. Leveraging his unrivaled access to the leaders, scientists, futurists, and others who are making AI a reality, Kahn will argue that if not carefully designed and vigilantly regulated AI will deepen income inequality, depressing wages while imposing winner-take-all markets across much of the economy. AI risks undermining democracy, as truth is overtaken by misinformation, racial bias, and harmful stereotypes. Continuing a process begun by the internet, AI will rewire our brains, likely inhibiting our ability to think critically, to remember, and even to get along with one another—unless we all take decisive action to prevent this from happening. Much as Michael Lewis’s classic The New New Thing offered a prescient, insightful, and eminently readable account of life inside the dot-com bubble, Mastering AI delivers much-needed guidance for anyone eager to understand the AI boom—and what comes next.
Author |
: Luca Pietro Giovanni Antiga |
Publisher |
: Simon and Schuster |
Total Pages |
: 518 |
Release |
: 2020-07-01 |
ISBN-10 |
: 9781638354079 |
ISBN-13 |
: 1638354073 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Deep Learning with PyTorch by : Luca Pietro Giovanni Antiga
“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production