Ai In Biological And Biomedical Imaging
Download Ai In Biological And Biomedical Imaging full books in PDF, epub, and Kindle. Read online free Ai In Biological And Biomedical Imaging ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Xin Gao |
Publisher |
: Frontiers Media SA |
Total Pages |
: 161 |
Release |
: 2022-01-17 |
ISBN-10 |
: 9782889740499 |
ISBN-13 |
: 2889740498 |
Rating |
: 4/5 (99 Downloads) |
Synopsis AI in Biological and Biomedical Imaging by : Xin Gao
Doctors Gao and Li hold patents related to artificial intelligence.
Author |
: Erik R. Ranschaert |
Publisher |
: Springer |
Total Pages |
: 369 |
Release |
: 2019-01-29 |
ISBN-10 |
: 9783319948782 |
ISBN-13 |
: 3319948784 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Artificial Intelligence in Medical Imaging by : Erik R. Ranschaert
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Author |
: Alejandro Frangi |
Publisher |
: Academic Press |
Total Pages |
: 700 |
Release |
: 2023-09-20 |
ISBN-10 |
: 9780128136584 |
ISBN-13 |
: 0128136588 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Medical Image Analysis by : Alejandro Frangi
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing
Author |
: Adam Bohr |
Publisher |
: Academic Press |
Total Pages |
: 385 |
Release |
: 2020-06-21 |
ISBN-10 |
: 9780128184394 |
ISBN-13 |
: 0128184396 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Artificial Intelligence in Healthcare by : Adam Bohr
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Author |
: Saravanan Krishnan |
Publisher |
: CRC Press |
Total Pages |
: 538 |
Release |
: 2021-03-30 |
ISBN-10 |
: 9781000067675 |
ISBN-13 |
: 100006767X |
Rating |
: 4/5 (75 Downloads) |
Synopsis Handbook of Artificial Intelligence in Biomedical Engineering by : Saravanan Krishnan
Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert’s knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts.
Author |
: Alex A.T. Bui |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 454 |
Release |
: 2009-12-01 |
ISBN-10 |
: 9781441903853 |
ISBN-13 |
: 1441903852 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Medical Imaging Informatics by : Alex A.T. Bui
Medical Imaging Informatics provides an overview of this growing discipline, which stems from an intersection of biomedical informatics, medical imaging, computer science and medicine. Supporting two complementary views, this volume explores the fundamental technologies and algorithms that comprise this field, as well as the application of medical imaging informatics to subsequently improve healthcare research. Clearly written in a four part structure, this introduction follows natural healthcare processes, illustrating the roles of data collection and standardization, context extraction and modeling, and medical decision making tools and applications. Medical Imaging Informatics identifies core concepts within the field, explores research challenges that drive development, and includes current state-of-the-art methods and strategies.
Author |
: Markus D. Dubber |
Publisher |
: Oxford University Press |
Total Pages |
: 1000 |
Release |
: 2020-06-30 |
ISBN-10 |
: 9780190067410 |
ISBN-13 |
: 0190067411 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Oxford Handbook of Ethics of AI by : Markus D. Dubber
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
Author |
: Nilanjan Dey |
Publisher |
: Academic Press |
Total Pages |
: 348 |
Release |
: 2018-11-30 |
ISBN-10 |
: 9780128160879 |
ISBN-13 |
: 012816087X |
Rating |
: 4/5 (79 Downloads) |
Synopsis Machine Learning in Bio-Signal Analysis and Diagnostic Imaging by : Nilanjan Dey
Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains
Author |
: Sujata Dash |
Publisher |
: John Wiley & Sons |
Total Pages |
: 450 |
Release |
: 2021-08-24 |
ISBN-10 |
: 9781119711247 |
ISBN-13 |
: 111971124X |
Rating |
: 4/5 (47 Downloads) |
Synopsis Biomedical Data Mining for Information Retrieval by : Sujata Dash
BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.
Author |
: Gobert Lee |
Publisher |
: Springer Nature |
Total Pages |
: 184 |
Release |
: 2020-02-06 |
ISBN-10 |
: 9783030331283 |
ISBN-13 |
: 3030331288 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Deep Learning in Medical Image Analysis by : Gobert Lee
This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.