Advances in Wheat Genetics: From Genome to Field

Advances in Wheat Genetics: From Genome to Field
Author :
Publisher : Springer
Total Pages : 421
Release :
ISBN-10 : 9784431556756
ISBN-13 : 4431556753
Rating : 4/5 (56 Downloads)

Synopsis Advances in Wheat Genetics: From Genome to Field by : Yasunari Ogihara

This proceedings is a collection of 46 selected papers that were presented at the 12th International Wheat Genetics Symposium (IWGS). Since the launch of the wheat genome sequencing project in 2005, the arrival of draft genome sequences has marked a new era in wheat genetics and genomics, catalyzing rapid advancement in the field. This book provides a comprehensive review of the forefront of wheat research, across various important topics such as germplasm and genetic diversity, cytogenetics and allopolyploid evolution, genome sequencing, structural and functional genomics, gene function and molecular biology, biotic stress, abiotic stress, grain quality, and classical and molecular breeding. Following an introduction, 9 parts of the book are dedicated to each of these topics. A final, 11th part entitled “Toward Sustainable Wheat Production” contains 7 excellent papers that were presented in the 12th IWGS Special Session supported by the OECD. With rapid population growth and radical climate changes, the world faces a global food crisis and is in need of another Green Revolution to boost yields of wheat and other widely grown staple crops. Although this book focuses on wheat, many of the newly developed techniques and results presented here can be applied to other plant species with large and complex genomes. As such, this volume is highly recommended for all students and researchers in wheat sciences and related plant sciences and for those who are interested in stable food production and food security.

Genetics and Genomics of the Triticeae

Genetics and Genomics of the Triticeae
Author :
Publisher : Springer Science & Business Media
Total Pages : 774
Release :
ISBN-10 : 9780387774893
ISBN-13 : 0387774890
Rating : 4/5 (93 Downloads)

Synopsis Genetics and Genomics of the Triticeae by : Catherine Feuillet

Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related to wheat and barley in Triticeae evolution, the latest developments in wheat and barley genomics will be of great use for developing rye genomics and for providing tools for rye improvement. Finally, a new model for temperate grasses has emerged in the past year with the development of the genetics and genomics (including a 8x whole genome shotgun sequencing project) of Brachypodium, a member of the Poeae family that is more closely related to the Triticeae than rice and can provide valuable information for supporting Triticeae genomics in the near future. These recent breakthroughs have yet to be reviewed in a single source of literature and current handbooks on wheat, barley, or rye are dedicated mainly to progress in genetics. In "Genetics and Genomics of the Triticeae", we will aim to comprehensively review the recent progress in the development of structural and functional genomics tools in the Triticeae species and review the understanding of wheat, barley, and rye biology that has resulted from these new resources as well as to illuminate how this new found knowledge can be applied for the improvement of these essential species. The book will be the seventh volume in the ambitious series of books, Plant Genetics and Genomics (Richard A. Jorgensen, series editor) that will attempt to bring the field up-to-date on the genetics and genomics of important crop plants and genetic models. It is our hope that the publication will be a useful and timely tool for researchers and students alike working with the Triticeae.

Wheat Studies - Retrospect and Prospects

Wheat Studies - Retrospect and Prospects
Author :
Publisher : Elsevier
Total Pages : 327
Release :
ISBN-10 : 9781483291888
ISBN-13 : 148329188X
Rating : 4/5 (88 Downloads)

Synopsis Wheat Studies - Retrospect and Prospects by : H. Kihara

This authoritative work has been written by a man whose career as an active wheat geneticist has spanned sixty years and has earned him a world-wide reputation. The book contains descriptions and much original data on genetical and cytogenetical findings concerning cultivated wheats and their relatives. It covers chromosomal analyses, genome analyses, ancestors of wheat, artificial synthesis of wheat, evidence of cytoplasmic inheritance and variations of wild species. The author explains how these facts and concepts have been discovered, points out the importance inherent in these discoveries, and shows how they can be utilized in genetical and breeding studies. Special emphasis is placed on the motives, processes and development of the studies.

Wheat Blast

Wheat Blast
Author :
Publisher : CRC Press
Total Pages : 157
Release :
ISBN-10 : 9780429894077
ISBN-13 : 0429894074
Rating : 4/5 (77 Downloads)

Synopsis Wheat Blast by : Sudheer Kumar

Wheat Blast provides systematic and practical information on wheat blast pathology, summarises research progress and discusses future perspectives based on current understanding of the existing issues. The book explores advance technologies that may help in deciding the path for future research and development for better strategies and techniques to manage the wheat blast disease. It equips readers with basic and applied understanding on the identification of disease, its distribution and chances of further spread in new areas, its potential to cause yield losses to wheat, the conditions that favour disease development, disease prediction modelling, resistance breeding methods and management strategies against wheat blast. Features: Provides comprehensive information on wheat blast pathogen and its management under a single umbrella Covers disease identification and diagnostics which will be helpful to check introduction in new areas Discusses methods and protocol to study the different aspects of the disease such as diagnostics, variability, resistance screening, epiphytotic creation etc. Gives deep insight on the past, present and future outlook of wheat blast research progress This book’s chapters are contributed by experts and pioneers in their respective fields and it provides comprehensive insight with updated findings on wheat blast research. It serves as a valuable reference for researchers, policy makers, students, teachers, farmers, seed growers, traders, and other stakeholders dealing with wheat.

Plant Genomes

Plant Genomes
Author :
Publisher : Karger Medical and Scientific Publishers
Total Pages : 155
Release :
ISBN-10 : 9783805584913
ISBN-13 : 3805584911
Rating : 4/5 (13 Downloads)

Synopsis Plant Genomes by : Jean-Nicolas Volff

Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.

Plant Breeding: Past, Present and Future

Plant Breeding: Past, Present and Future
Author :
Publisher : Springer
Total Pages : 710
Release :
ISBN-10 : 9783319232850
ISBN-13 : 3319232851
Rating : 4/5 (50 Downloads)

Synopsis Plant Breeding: Past, Present and Future by : John E. Bradshaw

This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary. The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.

Genetically Engineered Crops

Genetically Engineered Crops
Author :
Publisher : National Academies Press
Total Pages : 607
Release :
ISBN-10 : 9780309437387
ISBN-13 : 0309437385
Rating : 4/5 (87 Downloads)

Synopsis Genetically Engineered Crops by : National Academies of Sciences, Engineering, and Medicine

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.

Molecular Plant Breeding

Molecular Plant Breeding
Author :
Publisher : CABI
Total Pages : 756
Release :
ISBN-10 : 9781845936242
ISBN-13 : 1845936248
Rating : 4/5 (42 Downloads)

Synopsis Molecular Plant Breeding by : Yunbi Xu

Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.

Genetic and Genomic Resources of Grain Legume Improvement

Genetic and Genomic Resources of Grain Legume Improvement
Author :
Publisher : Newnes
Total Pages : 322
Release :
ISBN-10 : 9780123984944
ISBN-13 : 0123984947
Rating : 4/5 (44 Downloads)

Synopsis Genetic and Genomic Resources of Grain Legume Improvement by : Mohar Singh

Grain legumes, including common-bean, chickpea, pigeonpea, pea, cowpea, lentil and others, form important constituents of global diets, both vegetarian and non-vegetarian. Despite this significant role, global production has increased only marginally in the past 50 years. The slow production growth, along with a rising human population and improved buying capacity has substantially reduced the per capita availability of food legumes. Changes in environmental climate have also had significant impact on production, creating a need to identify stable donors among genetic resources for environmentally robust genes and designing crops resilient to climate change. Genetic and Genomic Resources of Grain Legume Improvement is the first book to bring together the latest resources in plant genetics and genomics to facilitate the identification of specific germplasm, trait mapping and allele mining to more effectively develop biotic and abiotic-stress-resistant grains. This book will be an invaluable resource for researchers, crop biologists and students working with crop development. - Explores origin, distribution and diversity of grain legumes - Presents information on germplasm collection, evaluation and maintenance - Offers insight into pre-breeding/germplasm enhancement efforts - Integrates genomic and genetic resources in crop improvement - Internationally contributed work