Advances in Shannon's Sampling Theory

Advances in Shannon's Sampling Theory
Author :
Publisher : CRC Press
Total Pages : 356
Release :
ISBN-10 : 0849342937
ISBN-13 : 9780849342936
Rating : 4/5 (37 Downloads)

Synopsis Advances in Shannon's Sampling Theory by : Ahmed I. Zayed

Advances in Shannon's Sampling Theory provides an up-to-date discussion of sampling theory, emphasizing the interaction between sampling theory and other branches of mathematical analysis, including the theory of boundary-value problems, frames, wavelets, multiresolution analysis, special functions, and functional analysis. The author not only traces the history and development of the theory, but also presents original research and results that have never before appeared in book form. Recent techniques covered include the Feichtinger-Gröchenig sampling theory; frames, wavelets, multiresolution analysis and sampling; boundary-value problems and sampling theorems; and special functions and sampling theorems. The book will interest graduate students and professionals in electrical engineering, communications, and applied mathematics.

Advances in Shannon's Sampling Theory

Advances in Shannon's Sampling Theory
Author :
Publisher : Routledge
Total Pages : 356
Release :
ISBN-10 : 9781351468190
ISBN-13 : 1351468197
Rating : 4/5 (90 Downloads)

Synopsis Advances in Shannon's Sampling Theory by : AhmedI. Zayed

Advances in Shannon's Sampling Theory provides an up-to-date discussion of sampling theory, emphasizing the interaction between sampling theory and other branches of mathematical analysis, including the theory of boundary-value problems, frames, wavelets, multiresolution analysis, special functions, and functional analysis. The author not only traces the history and development of the theory, but also presents original research and results that have never before appeared in book form. Recent techniques covered include the Feichtinger-Gröchenig sampling theory; frames, wavelets, multiresolution analysis and sampling; boundary-value problems and sampling theorems; and special functions and sampling theorems. The book will interest graduate students and professionals in electrical engineering, communications, and applied mathematics.

Advanced Topics in Shannon Sampling and Interpolation Theory

Advanced Topics in Shannon Sampling and Interpolation Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 364
Release :
ISBN-10 : 9781461397571
ISBN-13 : 146139757X
Rating : 4/5 (71 Downloads)

Synopsis Advanced Topics in Shannon Sampling and Interpolation Theory by : Robert J.II Marks

Advanced Topics in Shannon Sampling and Interpolation Theory is the second volume of a textbook on signal analysis solely devoted to the topic of sampling and restoration of continuous time signals and images. Sampling and reconstruction are fundamental problems in any field that deals with real-time signals or images, including communication engineering, image processing, seismology, speech recognition, and digital signal processing. This second volume includes contributions from leading researchers in the field on such topics as Gabor's signal expansion, sampling in optical image formation, linear prediction theory, polar and spiral sampling theory, interpolation from nonuniform samples, an extension of Papoulis's generalized sampling expansion to higher dimensions, and applications of sampling theory to optics and to time-frequency representations. The exhaustive bibliography on Shannon sampling theory will make this an invaluable research tool as well as an excellent text for students planning further research in the field.

Sampling Theory in Fourier and Signal Analysis: Advanced Topics

Sampling Theory in Fourier and Signal Analysis: Advanced Topics
Author :
Publisher : Oxford University Press
Total Pages : 320
Release :
ISBN-10 : 0198534965
ISBN-13 : 9780198534969
Rating : 4/5 (65 Downloads)

Synopsis Sampling Theory in Fourier and Signal Analysis: Advanced Topics by : J. R. Higgins

Volume 1 in this series laid the mathematical foundations of sampling theory; Volume 2 surveys the many applications of the theory both within mathematics and in other areas of science. Topics range over a wide variety of areas, and each application is given a modern treatment.

Lattice Point Identities and Shannon-Type Sampling

Lattice Point Identities and Shannon-Type Sampling
Author :
Publisher : CRC Press
Total Pages : 287
Release :
ISBN-10 : 9781000757743
ISBN-13 : 1000757749
Rating : 4/5 (43 Downloads)

Synopsis Lattice Point Identities and Shannon-Type Sampling by : Willi Freeden

Lattice Point Identities and Shannon-Type Sampling demonstrates that significant roots of many recent facets of Shannon's sampling theorem for multivariate signals rest on basic number-theoretic results. This book leads the reader through a research excursion, beginning from the Gaussian circle problem of the early nineteenth century, via the classical Hardy-Landau lattice point identity and the Hardy conjecture of the first half of the twentieth century, and the Shannon sampling theorem (its variants, generalizations and the fascinating stories about the cardinal series) of the second half of the twentieth century. The authors demonstrate how all these facets have resulted in new multivariate extensions of lattice point identities and Shannon-type sampling procedures of high practical applicability, thereby also providing a general reproducing kernel Hilbert space structure of an associated Paley-Wiener theory over (potato-like) bounded regions (cf. the cover illustration of the geoid), as well as the whole Euclidean space. All in all, the context of this book represents the fruits of cross-fertilization of various subjects, namely elliptic partial differential equations, Fourier inversion theory, constructive approximation involving Euler and Poisson summation formulas, inverse problems reflecting the multivariate antenna problem, and aspects of analytic and geometric number theory. Features: New convergence criteria for alternating series in multi-dimensional analysis Self-contained development of lattice point identities of analytic number theory Innovative lattice point approach to Shannon sampling theory Useful for students of multivariate constructive approximation, and indeed anyone interested in the applicability of signal processing to inverse problems.

Nonuniform Sampling

Nonuniform Sampling
Author :
Publisher : Springer Science & Business Media
Total Pages : 938
Release :
ISBN-10 : 9781461512295
ISBN-13 : 1461512298
Rating : 4/5 (95 Downloads)

Synopsis Nonuniform Sampling by : Farokh Marvasti

Our understanding of nature is often through nonuniform observations in space or time. In space, one normally observes the important features of an object, such as edges. The less important features are interpolated. History is a collection of important events that are nonuniformly spaced in time. Historians infer between events (interpolation) and politicians and stock market analysts forecast the future from past and present events (extrapolation). The 20 chapters of Nonuniform Sampling: Theory and Practice contain contributions by leading researchers in nonuniform and Shannon sampling, zero crossing, and interpolation theory. Its practical applications include NMR, seismology, speech and image coding, modulation and coding, optimal content, array processing, and digital filter design. It has a tutorial outlook for practising engineers and advanced students in science, engineering, and mathematics. It is also a useful reference for scientists and engineers working in the areas of medical imaging, geophysics, astronomy, biomedical engineering, computer graphics, digital filter design, speech and video processing, and phased array radar.

The Use of Frames in Sampling Theory

The Use of Frames in Sampling Theory
Author :
Publisher : Springer Nature
Total Pages : 314
Release :
ISBN-10 : 9783031632426
ISBN-13 : 3031632427
Rating : 4/5 (26 Downloads)

Synopsis The Use of Frames in Sampling Theory by : Antonio García García

Advances in Shannon's Sampling Theory

Advances in Shannon's Sampling Theory
Author :
Publisher :
Total Pages : 334
Release :
ISBN-10 : 1315136902
ISBN-13 : 9781315136905
Rating : 4/5 (02 Downloads)

Synopsis Advances in Shannon's Sampling Theory by : Ahmed I. Zayed

Advances in Imaging and Electron Physics

Advances in Imaging and Electron Physics
Author :
Publisher : Elsevier
Total Pages : 421
Release :
ISBN-10 : 9780080490052
ISBN-13 : 0080490050
Rating : 4/5 (52 Downloads)

Synopsis Advances in Imaging and Electron Physics by : Peter W. Hawkes

Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

Math Physics Foundation of Advanced Remote Sensing Digital Image Processing

Math Physics Foundation of Advanced Remote Sensing Digital Image Processing
Author :
Publisher : Springer Nature
Total Pages : 502
Release :
ISBN-10 : 9789819917785
ISBN-13 : 9819917786
Rating : 4/5 (85 Downloads)

Synopsis Math Physics Foundation of Advanced Remote Sensing Digital Image Processing by : Lei Yan

This book focuses on the mathematical and physical foundations of remote sensing digital image processing and introduces key algorithms utilized in this area. The book fully introduces the basic mathematical and physical process of digital imaging, the basic theory and algorithm of pixel image processing, and the higher-order image processing algorithm and its application. This book skillfully and closely integrates theory, algorithms, and applications, making it simple for readers to understand and use. Researchers and students working in the fields of remote sensing, computer vision, geographic information science, electronic information, etc., can profit from this book. For their work and research in digital image processing, they can master the fundamentals of imaging and image processing techniques.