Advances In Sentiment Analysis
Download Advances In Sentiment Analysis full books in PDF, epub, and Kindle. Read online free Advances In Sentiment Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: |
Publisher |
: BoD – Books on Demand |
Total Pages |
: 136 |
Release |
: 2024-01-10 |
ISBN-10 |
: 9780850140606 |
ISBN-13 |
: 0850140609 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Advances in Sentiment Analysis by :
This cutting-edge book brings together experts in the field to provide a multidimensional perspective on sentiment analysis, covering both foundational and advanced methodologies. Readers will gain insights into the latest natural language processing and machine learning techniques that power sentiment analysis, enabling the extraction of nuanced emotions from text. Key Features: •State-of-the-Art Techniques: Explore the most recent advancements in sentiment analysis, from deep learning approaches to sentiment lexicons and beyond. •Real-World Applications: Dive into a wide range of applications, including social media monitoring, customer feedback analysis, and sentiment-driven decision-making. •Cross-Disciplinary Insights: Understand how sentiment analysis influences and is influenced by fields such as marketing, psychology, and finance. •Ethical and Privacy Considerations: Delve into the ethical challenges and privacy concerns inherent to sentiment analysis, with discussions on responsible AI usage. •Future Directions: Get a glimpse into the future of sentiment analysis, with discussions on emerging trends and unresolved challenges. This book is an essential resource for researchers, practitioners, and students in fields like natural language processing, machine learning, and data science. Whether you’re interested in understanding customer sentiment, monitoring social media trends, or advancing the state of the art, this book will equip you with the knowledge and tools you need to navigate the complex landscape of sentiment analysis.
Author |
: Bing Liu |
Publisher |
: Morgan & Claypool Publishers |
Total Pages |
: 185 |
Release |
: 2012 |
ISBN-10 |
: 9781608458844 |
ISBN-13 |
: 1608458849 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Sentiment Analysis and Opinion Mining by : Bing Liu
Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language. It is one of the most active research areas in natural language processing and is also widely studied in data mining, Web mining, and text mining. In fact, this research has spread outside of computer science to the management sciences and social sciences due to its importance to business and society as a whole. The growing importance of sentiment analysis coincides with the growth of social media such as reviews, forum discussions, blogs, micro-blogs, Twitter, and social networks. For the first time in human history, we now have a huge volume of opinionated data recorded in digital form for analysis. Sentiment analysis systems are being applied in almost every business and social domain because opinions are central to almost all human activities and are key influencers of our behaviors. Our beliefs and perceptions of reality, and the choices we make, are largely conditioned on how others see and evaluate the world. For this reason, when we need to make a decision we often seek out the opinions of others. This is true not only for individuals but also for organizations. This book is a comprehensive introductory and survey text. It covers all important topics and the latest developments in the field with over 400 references. It is suitable for students, researchers and practitioners who are interested in social media analysis in general and sentiment analysis in particular. Lecturers can readily use it in class for courses on natural language processing, social media analysis, text mining, and data mining. Lecture slides are also available online. Table of Contents: Preface / Sentiment Analysis: A Fascinating Problem / The Problem of Sentiment Analysis / Document Sentiment Classification / Sentence Subjectivity and Sentiment Classification / Aspect-Based Sentiment Analysis / Sentiment Lexicon Generation / Opinion Summarization / Analysis of Comparative Opinions / Opinion Search and Retrieval / Opinion Spam Detection / Quality of Reviews / Concluding Remarks / Bibliography / Author Biography
Author |
: Bing Liu |
Publisher |
: Cambridge University Press |
Total Pages |
: 451 |
Release |
: 2020-10-15 |
ISBN-10 |
: 9781108787284 |
ISBN-13 |
: 1108787282 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Sentiment Analysis by : Bing Liu
Sentiment analysis is the computational study of people's opinions, sentiments, emotions, moods, and attitudes. This fascinating problem offers numerous research challenges, but promises insight useful to anyone interested in opinion analysis and social media analysis. This comprehensive introduction to the topic takes a natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs commonly used to express opinions, sentiments, and emotions. The book covers core areas of sentiment analysis and also includes related topics such as debate analysis, intention mining, and fake-opinion detection. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. In addition to traditional computational methods, this second edition includes recent deep learning methods to analyze and summarize sentiments and opinions, and also new material on emotion and mood analysis techniques, emotion-enhanced dialogues, and multimodal emotion analysis.
Author |
: Federico Alberto Pozzi |
Publisher |
: Morgan Kaufmann |
Total Pages |
: 286 |
Release |
: 2016-10-06 |
ISBN-10 |
: 9780128044384 |
ISBN-13 |
: 0128044381 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Sentiment Analysis in Social Networks by : Federico Alberto Pozzi
The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network analysis - Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network mining - Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics
Author |
: Basant Agarwal |
Publisher |
: Springer Nature |
Total Pages |
: 326 |
Release |
: 2020-01-24 |
ISBN-10 |
: 9789811512162 |
ISBN-13 |
: 9811512167 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Deep Learning-Based Approaches for Sentiment Analysis by : Basant Agarwal
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Author |
: Carlos A. Iglesias |
Publisher |
: MDPI |
Total Pages |
: 152 |
Release |
: 2020-04-02 |
ISBN-10 |
: 9783039285723 |
ISBN-13 |
: 3039285726 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Sentiment Analysis for Social Media by : Carlos A. Iglesias
Sentiment analysis is a branch of natural language processing concerned with the study of the intensity of the emotions expressed in a piece of text. The automated analysis of the multitude of messages delivered through social media is one of the hottest research fields, both in academy and in industry, due to its extremely high potential applicability in many different domains. This Special Issue describes both technological contributions to the field, mostly based on deep learning techniques, and specific applications in areas like health insurance, gender classification, recommender systems, and cyber aggression detection.
Author |
: Hoai An Le Thi |
Publisher |
: Springer |
Total Pages |
: 417 |
Release |
: 2015-05-04 |
ISBN-10 |
: 9783319179964 |
ISBN-13 |
: 3319179969 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Advanced Computational Methods for Knowledge Engineering by : Hoai An Le Thi
This volume contains the extended versions of papers presented at the 3rd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2015) held on 11-13 May, 2015 in Metz, France. The book contains 5 parts: 1. Mathematical programming and optimization: theory, methods and software, Operational research and decision making, Machine learning, data security, and bioinformatics, Knowledge information system, Software engineering. All chapters in the book discuss theoretical and algorithmic as well as practical issues connected with computation methods & optimization methods for knowledge engineering and machine learning techniques.
Author |
: Sabine Bergler |
Publisher |
: Springer |
Total Pages |
: 391 |
Release |
: 2008-05-20 |
ISBN-10 |
: 9783540688259 |
ISBN-13 |
: 3540688250 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Advances in Artificial Intelligence by : Sabine Bergler
This book constitutes the refereed proceedings of the 21st Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2008, held in Windsor, Canada, in May 2008. The 30 revised full papers presented together with 5 revised short papers were carefully reviewed and selected from 75 submissions. The papers present original high-quality research in all areas of Artificial Intelligence and apply historical AI techniques to modern problem domains as well as recent techniques to historical problem settings.
Author |
: Roman Egger |
Publisher |
: Springer Nature |
Total Pages |
: 647 |
Release |
: 2022-01-31 |
ISBN-10 |
: 9783030883898 |
ISBN-13 |
: 3030883892 |
Rating |
: 4/5 (98 Downloads) |
Synopsis Applied Data Science in Tourism by : Roman Egger
Access to large data sets has led to a paradigm shift in the tourism research landscape. Big data is enabling a new form of knowledge gain, while at the same time shaking the epistemological foundations and requiring new methods and analysis approaches. It allows for interdisciplinary cooperation between computer sciences and social and economic sciences, and complements the traditional research approaches. This book provides a broad basis for the practical application of data science approaches such as machine learning, text mining, social network analysis, and many more, which are essential for interdisciplinary tourism research. Each method is presented in principle, viewed analytically, and its advantages and disadvantages are weighed up and typical fields of application are presented. The correct methodical application is presented with a "how-to" approach, together with code examples, allowing a wider reader base including researchers, practitioners, and students entering the field. The book is a very well-structured introduction to data science – not only in tourism – and its methodological foundations, accompanied by well-chosen practical cases. It underlines an important insight: data are only representations of reality, you need methodological skills and domain background to derive knowledge from them - Hannes Werthner, Vienna University of Technology Roman Egger has accomplished a difficult but necessary task: make clear how data science can practically support and foster travel and tourism research and applications. The book offers a well-taught collection of chapters giving a comprehensive and deep account of AI and data science for tourism - Francesco Ricci, Free University of Bozen-Bolzano This well-structured and easy-to-read book provides a comprehensive overview of data science in tourism. It contributes largely to the methodological repository beyond traditional methods. - Rob Law, University of Macau
Author |
: James G. Shanahan |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 346 |
Release |
: 2006-01-17 |
ISBN-10 |
: 9781402041020 |
ISBN-13 |
: 1402041020 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Computing Attitude and Affect in Text: Theory and Applications by : James G. Shanahan
Human Language Technology (HLT) and Natural Language Processing (NLP) systems have typically focused on the “factual” aspect of content analysis. Other aspects, including pragmatics, opinion, and style, have received much less attention. However, to achieve an adequate understanding of a text, these aspects cannot be ignored. The chapters in this book address the aspect of subjective opinion, which includes identifying different points of view, identifying different emotive dimensions, and classifying text by opinion. Various conceptual models and computational methods are presented. The models explored in this book include the following: distinguishing attitudes from simple factual assertions; distinguishing between the author’s reports from reports of other people’s opinions; and distinguishing between explicitly and implicitly stated attitudes. In addition, many applications are described that promise to benefit from the ability to understand attitudes and affect, including indexing and retrieval of documents by opinion; automatic question answering about opinions; analysis of sentiment in the media and in discussion groups about consumer products, political issues, etc. ; brand and reputation management; discovering and predicting consumer and voting trends; analyzing client discourse in therapy and counseling; determining relations between scientific texts by finding reasons for citations; generating more appropriate texts and making agents more believable; and creating writers’ aids. The studies reported here are carried out on different languages such as English, French, Japanese, and Portuguese. Difficult challenges remain, however. It can be argued that analyzing attitude and affect in text is an “NLP”-complete problem.