Advances In Semiconductor Nanostructures
Download Advances In Semiconductor Nanostructures full books in PDF, epub, and Kindle. Read online free Advances In Semiconductor Nanostructures ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Alexander V. Latyshev |
Publisher |
: Elsevier |
Total Pages |
: 553 |
Release |
: 2016-11-10 |
ISBN-10 |
: 9780128105139 |
ISBN-13 |
: 0128105135 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Advances in Semiconductor Nanostructures by : Alexander V. Latyshev
Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications focuses on the physical aspects of semiconductor nanostructures, including growth and processing of semiconductor nanostructures by molecular-beam epitaxy, ion-beam implantation/synthesis, pulsed laser action on all types of III–V, IV, and II–VI semiconductors, nanofabrication by bottom-up and top-down approaches, real-time observations using in situ UHV-REM and high-resolution TEM of atomic structure of quantum well, nanowires, quantum dots, and heterostructures and their electrical, optical, magnetic, and spin phenomena. The very comprehensive nature of the book makes it an indispensable source of information for researchers, scientists, and post-graduate students in the field of semiconductor physics, condensed matter physics, and physics of nanostructures, helping them in their daily research. - Presents a comprehensive reference on the novel physical phenomena and properties of semiconductor nanostructures - Covers recent developments in the field from all over the world - Provides an International approach, as chapters are based on results obtained in collaboration with research groups from Russia, Germany, France, England, Japan, Holland, USA, Belgium, China, Israel, Brazil, and former Soviet Union countries
Author |
: Todd D. Steiner |
Publisher |
: Artech House |
Total Pages |
: 438 |
Release |
: 2004 |
ISBN-10 |
: 1580537529 |
ISBN-13 |
: 9781580537520 |
Rating |
: 4/5 (29 Downloads) |
Synopsis Semiconductor Nanostructures for Optoelectronic Applications by : Todd D. Steiner
Annotation Tiny structures measurable on the nanometer scale (one-billionth of a meter) are known as nanostructures, and nanotechnology is the emerging application of these nanostructures into useful nanoscale devices. As we enter the 21st century, more and more professional are using nanotechnology to create semiconductors for a variety of applications, including communications, information technology, medical, and transportation devices. Written by today's best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics.
Author |
: Eckehard Schöll |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 394 |
Release |
: 2013-11-27 |
ISBN-10 |
: 9781461558071 |
ISBN-13 |
: 1461558077 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Theory of Transport Properties of Semiconductor Nanostructures by : Eckehard Schöll
Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.
Author |
: Massimo V. Fischetti |
Publisher |
: Springer |
Total Pages |
: 481 |
Release |
: 2016-05-20 |
ISBN-10 |
: 9783319011011 |
ISBN-13 |
: 3319011014 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Advanced Physics of Electron Transport in Semiconductors and Nanostructures by : Massimo V. Fischetti
This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.
Author |
: |
Publisher |
: Academic Press |
Total Pages |
: 401 |
Release |
: 1974-11-29 |
ISBN-10 |
: 9780080864938 |
ISBN-13 |
: 0080864937 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Solid State Physics by :
Solid State Physics
Author |
: Giovanni Agostini |
Publisher |
: Elsevier |
Total Pages |
: 501 |
Release |
: 2011-08-11 |
ISBN-10 |
: 9780080558158 |
ISBN-13 |
: 0080558151 |
Rating |
: 4/5 (58 Downloads) |
Synopsis Characterization of Semiconductor Heterostructures and Nanostructures by : Giovanni Agostini
In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors
Author |
: Richard Haight |
Publisher |
: World Scientific |
Total Pages |
: 346 |
Release |
: 2012 |
ISBN-10 |
: 9789814322843 |
ISBN-13 |
: 9814322849 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization by : Richard Haight
As we delve more deeply into the physics and chemistry of functional materials and processes, we are inexorably driven to the nanoscale. And nowhere is the development of instrumentation and associated techniques more important to scientific progress than in the area of nanoscience. The dramatic expansion of efforts to peer into nanoscale materials and processes has made it critical to capture and summarize the cutting-edge instrumentation and techniques that have become indispensable for scientific investigation in this arena. This Handbook is a key resource developed for scientists, engineers and advanced graduate students in which eminent scientists present the forefront of instrumentation and techniques for the study of structural, optical and electronic properties of semiconductor nanostructures.
Author |
: Jagdeep Shah |
Publisher |
: Elsevier |
Total Pages |
: 525 |
Release |
: 2012-12-02 |
ISBN-10 |
: 9780080925707 |
ISBN-13 |
: 0080925707 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Hot Carriers in Semiconductor Nanostructures by : Jagdeep Shah
Nonequilibrium hot charge carriers play a crucial role in the physics and technology of semiconductor nanostructure devices. This book, one of the first on the topic, discusses fundamental aspects of hot carriers in quasi-two-dimensional systems and the impact of these carriers on semiconductor devices. The work will provide scientists and device engineers with an authoritative review of the most exciting recent developments in this rapidly moving field. It should be read by all those who wish to learn the fundamentals of contemporary ultra-small, ultra-fast semiconductor devices. - Topics covered include - Reduced dimensionality and quantum wells - Carrier-phonon interactions and hot phonons - Femtosecond optical studies of hot carrier - Ballistic transport - Submicron and resonant tunneling devices
Author |
: Jyoti Prasad Banerjee |
Publisher |
: CRC Press |
Total Pages |
: 554 |
Release |
: 2019-06-11 |
ISBN-10 |
: 9781482223064 |
ISBN-13 |
: 1482223066 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Physics of Semiconductors and Nanostructures by : Jyoti Prasad Banerjee
This book is a comprehensive text on the physics of semiconductors and nanostructures for a large spectrum of students at the final undergraduate level studying physics, material science and electronics engineering. It offers introductory and advanced courses on solid state and semiconductor physics on one hand and the physics of low dimensional semiconductor structures on the other in a single text book. Key Features Presents basic concepts of quantum theory, solid state physics, semiconductors, and quantum nanostructures such as quantum well, quantum wire, quantum dot and superlattice In depth description of semiconductor heterojunctions, lattice strain and modulation doping technique Covers transport in nanostructures under an electric and magnetic field with the topics: quantized conductance, Coulomb blockade, and integer and fractional quantum Hall effect Presents the optical processes in nanostructures under a magnetic field Includes illustrative problems with hints for solutions in each chapter Physics of Semiconductors and Nanostructures will be helpful to students initiating PhD work in the field of semiconductor nanostructures and devices. It follows a unique tutorial approach meeting the requirements of students who find learning the concepts difficult and want to study from a physical perspective.
Author |
: |
Publisher |
: Academic Press |
Total Pages |
: 465 |
Release |
: 1991-05-01 |
ISBN-10 |
: 9780080865089 |
ISBN-13 |
: 0080865089 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Advances in Research and Applications: Semiconductor Heterostructures and Nanostructures by :
The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.