Advances In Numerical Methods For Hyperbolic Balance Laws And Related Problems
Download Advances In Numerical Methods For Hyperbolic Balance Laws And Related Problems full books in PDF, epub, and Kindle. Read online free Advances In Numerical Methods For Hyperbolic Balance Laws And Related Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Giacomo Albi |
Publisher |
: Springer Nature |
Total Pages |
: 241 |
Release |
: 2023-06-02 |
ISBN-10 |
: 9783031298752 |
ISBN-13 |
: 3031298756 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems by : Giacomo Albi
A broad range of phenomena in science and technology can be described by non-linear partial differential equations characterized by systems of conservation laws with source terms. Well known examples are hyperbolic systems with source terms, kinetic equations, and convection-reaction-diffusion equations. This book collects research advances in numerical methods for hyperbolic balance laws and kinetic equations together with related modelling aspects. All the contributions are based on the talks of the speakers of the Young Researchers’ Conference “Numerical Aspects of Hyperbolic Balance Laws and Related Problems”, hosted at the University of Verona, Italy, in December 2021.
Author |
: Jan S. Hesthaven |
Publisher |
: SIAM |
Total Pages |
: 571 |
Release |
: 2018-01-30 |
ISBN-10 |
: 9781611975109 |
ISBN-13 |
: 1611975107 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Numerical Methods for Conservation Laws by : Jan S. Hesthaven
Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
Author |
: María Luz Muñoz-Ruiz |
Publisher |
: Springer Nature |
Total Pages |
: 269 |
Release |
: 2021-05-25 |
ISBN-10 |
: 9783030728502 |
ISBN-13 |
: 3030728501 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Recent Advances in Numerical Methods for Hyperbolic PDE Systems by : María Luz Muñoz-Ruiz
The present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Málaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.
Author |
: Bernardo Cockburn |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 468 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642597213 |
ISBN-13 |
: 3642597211 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Discontinuous Galerkin Methods by : Bernardo Cockburn
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Author |
: Philippe G. LeFloch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 1010 |
Release |
: 2002-07-01 |
ISBN-10 |
: 3764366877 |
ISBN-13 |
: 9783764366872 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Hyperbolic Systems of Conservation Laws by : Philippe G. LeFloch
This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.
Author |
: Randall J. LeVeque |
Publisher |
: Cambridge University Press |
Total Pages |
: 582 |
Release |
: 2002-08-26 |
ISBN-10 |
: 9781139434188 |
ISBN-13 |
: 1139434187 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Finite Volume Methods for Hyperbolic Problems by : Randall J. LeVeque
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Author |
: François Bouchut |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 148 |
Release |
: 2004-06-25 |
ISBN-10 |
: 3764366656 |
ISBN-13 |
: 9783764366650 |
Rating |
: 4/5 (56 Downloads) |
Synopsis Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws by : François Bouchut
The schemes are analyzed regarding their nonlinear stability Recently developed entropy schemes are presented A formalism is introduced for source terms
Author |
: Robert Klöfkorn |
Publisher |
: Springer Nature |
Total Pages |
: 727 |
Release |
: 2020-06-09 |
ISBN-10 |
: 9783030436513 |
ISBN-13 |
: 3030436519 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples by : Robert Klöfkorn
The proceedings of the 9th conference on "Finite Volumes for Complex Applications" (Bergen, June 2020) are structured in two volumes. The first volume collects the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Topics covered include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. Altogether, a rather comprehensive overview is given on the state of the art in the field. The properties of the methods considered in the conference give them distinguished advantages for a number of applications. These include fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory, carbon capture utilization and storage, geothermal energy and further topics. The second volume covers reviewed contributions reporting successful applications of finite volume and related methods in these fields. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability, making the finite volume methods compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.
Author |
: Karl Kunisch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 825 |
Release |
: 2008-09-19 |
ISBN-10 |
: 9783540697770 |
ISBN-13 |
: 3540697772 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Numerical Mathematics and Advanced Applications by : Karl Kunisch
The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) is a series of conferences held every two years to provide a forum for discussion on recent aspects of numerical mathematics and their applications. The ?rst ENUMATH conference was held in Paris (1995), and the series continued by the one in Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), and Santiago de Compostela (2005). This volume contains a selection of invited plenary lectures, papers presented in minisymposia, and contributed papers of ENUMATH 2007, held in Graz, Austria, September 10–14, 2007. We are happy that so many people have shown their interest in this conference. In addition to the ten invited presentations and the public lecture, we had more than 240 talks in nine minisymposia and ?fty four sessions of contributed talks, and about 316 participants from all over the world, specially from Europe. A total of 98 contributions appear in these proceedings. Topics include theoretical aspects of new numerical techniques and algorithms, as well as to applications in engineering and science. The book will be useful for a wide range of readers, giving them an excellent overview of the most modern methods, techniques, algorithms and results in numerical mathematics, scienti?c computing and their applications. We would like to thank all the participants for the attendance and for their va- ablecontributionsanddiscussionsduringtheconference.Specialthanksgothe m- isymposium organizers, who made a large contribution to the conference, the chair persons, and all speakers.
Author |
: Angelo M. Anile |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 667 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9783662047842 |
ISBN-13 |
: 3662047845 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Progress in Industrial Mathematics at ECMI 2000 by : Angelo M. Anile
Realizing the need of interaction between universities and research groups in industry, the European Consortium for Mathematics in Industry (ECMI) was founded in 1986 by mathematicians from ten European universities. Since then it has been continuously extending and now it involves about all Euro pean countries. The aims of ECMI are • To promote the use of mathematical models in industry. • To educate industrial mathematicians to meet the growing demand for such experts. • To operate on a European Scale. Mathematics, as the language of the sciences, has always played an im portant role in technology, and now is applied also to a variety of problems in commerce and the environment. European industry is increasingly becoming dependent on high technology and the need for mathematical expertise in both research and development can only grow. These new demands on mathematics have stimulated academic interest in Industrial Mathematics and many mathematical groups world-wide are committed to interaction with industry as part of their research activities. ECMI was founded with the intention of offering its collective knowledge and expertise to European Industry. The experience of ECMI members is that similar technical problems are encountered by different companies in different countries. It is also true that the same mathematical expertise may often be used in differing industrial applications.