Advances in Intelligent Data Analysis XIII

Advances in Intelligent Data Analysis XIII
Author :
Publisher : Springer
Total Pages : 411
Release :
ISBN-10 : 9783319125718
ISBN-13 : 3319125710
Rating : 4/5 (18 Downloads)

Synopsis Advances in Intelligent Data Analysis XIII by : Hendrik Blockeel

This book constitutes the refereed conference proceedings of the 13th International Conference on Intelligent Data Analysis, which was held in October/November 2014 in Leuven, Belgium. The 33 revised full papers together with 3 invited papers were carefully reviewed and selected from 70 submissions handling all kinds of modeling and analysis methods, irrespective of discipline. The papers cover all aspects of intelligent data analysis, including papers on intelligent support for modeling and analyzing data from complex, dynamical systems.

Advances in Intelligent Data Analysis XVIII

Advances in Intelligent Data Analysis XVIII
Author :
Publisher : Springer
Total Pages : 588
Release :
ISBN-10 : 3030445836
ISBN-13 : 9783030445836
Rating : 4/5 (36 Downloads)

Synopsis Advances in Intelligent Data Analysis XVIII by : Michael R. Berthold

This open access book constitutes the proceedings of the 18th International Conference on Intelligent Data Analysis, IDA 2020, held in Konstanz, Germany, in April 2020. The 45 full papers presented in this volume were carefully reviewed and selected from 114 submissions. Advancing Intelligent Data Analysis requires novel, potentially game-changing ideas. IDA’s mission is to promote ideas over performance: a solid motivation can be as convincing as exhaustive empirical evaluation.

Advances in Intelligent Data Analysis and Applications

Advances in Intelligent Data Analysis and Applications
Author :
Publisher : Springer Nature
Total Pages : 379
Release :
ISBN-10 : 9789811650369
ISBN-13 : 9811650365
Rating : 4/5 (69 Downloads)

Synopsis Advances in Intelligent Data Analysis and Applications by : Jeng-Shyang Pan

This book constitutes the Proceeding of the Sixth International Conference on Intelligent Data Analysis and Applications, October 15–18, 2019, Arad, Romania. This edition is technically co-sponsored by “Aurel Vlaicu” University of Arad, Romania, Southwest Jiaotong University, Fujian University of Technology, Chang’an University, Shandong University of Science and Technology, Fujian Provincial Key Lab of Big Data Mining and Applications, and National Demonstration Center for Experimental Electronic Information and Electrical Technology Education (Fujian University of Technology), China, Romanian Academy, and General Association of Engineers in Romania - Arad Section. The book covers a range of topics: Machine Learning, Intelligent Control, Pattern Recognition, Computational Intelligence, Signal Analysis, Modeling and Visualization, Multimedia Sensing and Sensory Systems, Signal control, Imaging and Processing, Information System Security, Cryptography and Cryptanalysis, Databases and Data Mining, Information Hiding, Cloud Computing, Information Retrieval and Integration, Robotics, Control, Agents, Command, Control, Communication and Computers (C4), Swarming Technology, Sensor Technology, Smart cities. The book offers a timely, board snapshot of new development including trends and challenges that are yielding recent research directions in different areas of intelligent data analysis and applications. The book provides useful information to professors, researchers, and graduated students in area of intelligent data analysis and applications.

Advances in Intelligent Data Analysis VIII

Advances in Intelligent Data Analysis VIII
Author :
Publisher : Springer
Total Pages : 429
Release :
ISBN-10 : 9783642039157
ISBN-13 : 3642039154
Rating : 4/5 (57 Downloads)

Synopsis Advances in Intelligent Data Analysis VIII by : Niall M. Adams

This book constitutes the refereed proceedings of the 8th International Conference on Intelligent Data Analysis, IDA 2009, held in Lyon, France, August 31 - September 2, 2009. The 33 revised papers, 18 full oral presentations and 15 poster and short oral presentations, presented were carefully reviewed and selected from almost 80 submissions. All current aspects of this interdisciplinary field are addressed; for example interactive tools to guide and support data analysis in complex scenarios, increasing availability of automatically collected data, tools that intelligently support and assist human analysts, how to control clustering results and isotonic classification trees. In general the areas covered include statistics, machine learning, data mining, classification and pattern recognition, clustering, applications, modeling, and interactive dynamic data visualization.

Intelligent Data Analysis in Medicine and Pharmacology

Intelligent Data Analysis in Medicine and Pharmacology
Author :
Publisher : Springer Science & Business Media
Total Pages : 320
Release :
ISBN-10 : 9781461560593
ISBN-13 : 1461560594
Rating : 4/5 (93 Downloads)

Synopsis Intelligent Data Analysis in Medicine and Pharmacology by : Nada Lavrač

Intelligent data analysis, data mining and knowledge discovery in databases have recently gained the attention of a large number of researchers and practitioners. This is witnessed by the rapidly increasing number of submissions and participants at related conferences and workshops, by the emergence of new journals in this area (e.g., Data Mining and Knowledge Discovery, Intelligent Data Analysis, etc.), and by the increasing number of new applications in this field. In our view, the awareness of these challenging research fields and emerging technologies has been much larger in industry than in medicine and pharmacology. The main purpose of this book is to present the various techniques and methods that are available for intelligent data analysis in medicine and pharmacology, and to present case studies of their application. Intelligent Data Analysis in Medicine and Pharmacology consists of selected (and thoroughly revised) papers presented at the First International Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-96) held in Budapest in August 1996 as part of the 12th European Conference on Artificial Intelligence (ECAI-96), IDAMAP-96 was organized with the motivation to gather scientists and practitioners interested in computational data analysis methods applied to medicine and pharmacology, aimed at narrowing the increasing gap between excessive amounts of data stored in medical and pharmacological databases on the one hand, and the interpretation, understanding and effective use of stored data on the other hand. Besides the revised Workshop papers, the book contains a selection of contributions by invited authors. The expected readership of the book is researchers and practitioners interested in intelligent data analysis, data mining, and knowledge discovery in databases, particularly those who are interested in using these technologies in medicine and pharmacology. Researchers and students in artificial intelligence and statistics should find this book of interest as well. Finally, much of the presented material will be interesting to physicians and pharmacologists challenged by new computational technologies, or simply in need of effectively utilizing the overwhelming volumes of data collected as a result of improved computer support in their daily professional practice.

Advances in Intelligent Data Analysis. Reasoning about Data

Advances in Intelligent Data Analysis. Reasoning about Data
Author :
Publisher : Springer Science & Business Media
Total Pages : 644
Release :
ISBN-10 : 3540633464
ISBN-13 : 9783540633464
Rating : 4/5 (64 Downloads)

Synopsis Advances in Intelligent Data Analysis. Reasoning about Data by : Xiaohui Liu

This book constitutes the refereed proceedings of the Second International Symposium on Intelligent Data Analysis, IDA-97, held in London, UK, in August 1997. The volume presents 50 revised full papers selected from a total of 107 submissions. Also included is a keynote, Intelligent Data Analysis: Issues and Opportunities, by David J. Hand. The papers are organized in sections on exploratory data analysis, preprocessing and tools; classification and feature selection; medical applications; soft computing; knowledge discovery and data mining; estimation and clustering; data quality; qualitative models.

Intelligent Data Analysis

Intelligent Data Analysis
Author :
Publisher : Springer
Total Pages : 515
Release :
ISBN-10 : 9783540486251
ISBN-13 : 3540486259
Rating : 4/5 (51 Downloads)

Synopsis Intelligent Data Analysis by : Michael R. Berthold

This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.

Machine Learning Paradigms

Machine Learning Paradigms
Author :
Publisher : Springer
Total Pages : 230
Release :
ISBN-10 : 9783030137434
ISBN-13 : 3030137430
Rating : 4/5 (34 Downloads)

Synopsis Machine Learning Paradigms by : Maria Virvou

This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.

Soft Computing and Intelligent Data Analysis in Oil Exploration

Soft Computing and Intelligent Data Analysis in Oil Exploration
Author :
Publisher : Elsevier
Total Pages : 755
Release :
ISBN-10 : 9780080541327
ISBN-13 : 0080541321
Rating : 4/5 (27 Downloads)

Synopsis Soft Computing and Intelligent Data Analysis in Oil Exploration by : M. Nikravesh

This comprehensive book highlights soft computing and geostatistics applications in hydrocarbon exploration and production, combining practical and theoretical aspects.It spans a wide spectrum of applications in the oil industry, crossing many discipline boundaries such as geophysics, geology, petrophysics and reservoir engineering. It is complemented by several tutorial chapters on fuzzy logic, neural networks and genetic algorithms and geostatistics to introduce these concepts to the uninitiated. The application areas include prediction of reservoir properties (porosity, sand thickness, lithology, fluid), seismic processing, seismic and bio stratigraphy, time lapse seismic and core analysis.There is a good balance between introducing soft computing and geostatistics methodologies that are not routinely used in the petroleum industry and various applications areas. The book can be used by many practitioners such as processing geophysicists, seismic interpreters, geologists, reservoir engineers, petrophysicist, geostatistians, asset mangers and technology application professionals. It will also be of interest to academics to assess the importance of, and contribute to, R&D efforts in relevant areas.