Progress on Difference Equations and Discrete Dynamical Systems

Progress on Difference Equations and Discrete Dynamical Systems
Author :
Publisher : Springer Nature
Total Pages : 440
Release :
ISBN-10 : 9783030601072
ISBN-13 : 3030601072
Rating : 4/5 (72 Downloads)

Synopsis Progress on Difference Equations and Discrete Dynamical Systems by : Steve Baigent

This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.

Discrete Dynamics and Difference Equations

Discrete Dynamics and Difference Equations
Author :
Publisher : World Scientific
Total Pages : 438
Release :
ISBN-10 : 9789814287647
ISBN-13 : 9814287644
Rating : 4/5 (47 Downloads)

Synopsis Discrete Dynamics and Difference Equations by : Saber N. Elaydi

This volume holds a collection of articles based on the talks presented at ICDEA 2007 in Lisbon, Portugal. The volume encompasses current topics on stability and bifurcation, chaos, mathematical biology, iteration theory, nonautonomous systems, and stochastic dynamical systems.

Advances in Difference Equations and Discrete Dynamical Systems

Advances in Difference Equations and Discrete Dynamical Systems
Author :
Publisher : Springer
Total Pages : 282
Release :
ISBN-10 : 9789811064098
ISBN-13 : 9811064091
Rating : 4/5 (98 Downloads)

Synopsis Advances in Difference Equations and Discrete Dynamical Systems by : Saber Elaydi

This volume contains the proceedings of the 22nd International Conference on Difference Equations and Applications, held at Osaka Prefecture University, Osaka, Japan, in July 2016. The conference brought together both experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete dynamical systems with applications to mathematical sciences and, in particular, mathematical biology and economics. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete dynamical systems, and their applications.

Discrete Dynamical Systems and Difference Equations with Mathematica

Discrete Dynamical Systems and Difference Equations with Mathematica
Author :
Publisher : CRC Press
Total Pages : 363
Release :
ISBN-10 : 9781420035353
ISBN-13 : 1420035355
Rating : 4/5 (53 Downloads)

Synopsis Discrete Dynamical Systems and Difference Equations with Mathematica by : Mustafa R.S. Kulenovic

Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find ba

Advances in Discrete Dynamical Systems, Difference Equations and Applications

Advances in Discrete Dynamical Systems, Difference Equations and Applications
Author :
Publisher : Springer Nature
Total Pages : 534
Release :
ISBN-10 : 9783031252259
ISBN-13 : 303125225X
Rating : 4/5 (59 Downloads)

Synopsis Advances in Discrete Dynamical Systems, Difference Equations and Applications by : Saber Elaydi

​This book comprises selected papers of the 26th International Conference on Difference Equations and Applications, ICDEA 2021, held virtually at the University of Sarajevo, Bosnia and Herzegovina, in July 2021. The book includes the latest and significant research and achievements in difference equations, discrete dynamical systems, and their applications in various scientific disciplines. The book is interesting for Ph.D. students and researchers who want to keep up to date with the latest research, developments, and achievements in difference equations, discrete dynamical systems, and their applications, the real-world problems.

Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition
Author :
Publisher : SIAM
Total Pages : 410
Release :
ISBN-10 : 9781611974645
ISBN-13 : 161197464X
Rating : 4/5 (45 Downloads)

Synopsis Differential Dynamical Systems, Revised Edition by : James D. Meiss

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.

Advances in Dynamic Equations on Time Scales

Advances in Dynamic Equations on Time Scales
Author :
Publisher : Springer Science & Business Media
Total Pages : 354
Release :
ISBN-10 : 9780817682309
ISBN-13 : 0817682309
Rating : 4/5 (09 Downloads)

Synopsis Advances in Dynamic Equations on Time Scales by : Martin Bohner

Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

Discrete Differential Geometry

Discrete Differential Geometry
Author :
Publisher : American Mathematical Society
Total Pages : 432
Release :
ISBN-10 : 9781470474560
ISBN-13 : 1470474565
Rating : 4/5 (60 Downloads)

Synopsis Discrete Differential Geometry by : Alexander I. Bobenko

An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems
Author :
Publisher : American Mathematical Society
Total Pages : 370
Release :
ISBN-10 : 9781470476410
ISBN-13 : 147047641X
Rating : 4/5 (10 Downloads)

Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations
Author :
Publisher : SIAM
Total Pages : 356
Release :
ISBN-10 : 0898717833
ISBN-13 : 9780898717839
Rating : 4/5 (33 Downloads)

Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.