Advanced Regression Models With Sas And R
Download Advanced Regression Models With Sas And R full books in PDF, epub, and Kindle. Read online free Advanced Regression Models With Sas And R ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Olga Korosteleva |
Publisher |
: CRC Press |
Total Pages |
: 325 |
Release |
: 2018-12-07 |
ISBN-10 |
: 9781351690089 |
ISBN-13 |
: 1351690086 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Advanced Regression Models with SAS and R by : Olga Korosteleva
Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master’s students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.
Author |
: OLGA. KOROSTELEVA |
Publisher |
: CRC Press |
Total Pages |
: 14 |
Release |
: 2020-12-18 |
ISBN-10 |
: 0367732424 |
ISBN-13 |
: 9780367732424 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Advanced Regression Models with SAS and R by : OLGA. KOROSTELEVA
Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master's students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.
Author |
: Iain Pardoe |
Publisher |
: John Wiley & Sons |
Total Pages |
: 319 |
Release |
: 2013-01-07 |
ISBN-10 |
: 9781118345047 |
ISBN-13 |
: 1118345045 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Applied Regression Modeling by : Iain Pardoe
Praise for the First Edition "The attention to detail is impressive. The book is very well written and the author is extremely careful with his descriptions . . . the examples are wonderful." —The American Statistician Fully revised to reflect the latest methodologies and emerging applications, Applied Regression Modeling, Second Edition continues to highlight the benefits of statistical methods, specifically regression analysis and modeling, for understanding, analyzing, and interpreting multivariate data in business, science, and social science applications. The author utilizes a bounty of real-life examples, case studies, illustrations, and graphics to introduce readers to the world of regression analysis using various software packages, including R, SPSS, Minitab, SAS, JMP, and S-PLUS. In a clear and careful writing style, the book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, and Bayesian modeling. In addition, the Second Edition features clarification and expansion of challenging topics, such as: Transformations, indicator variables, and interaction Testing model assumptions Nonconstant variance Autocorrelation Variable selection methods Model building and graphical interpretation Throughout the book, datasets and examples have been updated and additional problems are included at the end of each chapter, allowing readers to test their comprehension of the presented material. In addition, a related website features the book's datasets, presentation slides, detailed statistical software instructions, and learning resources including additional problems and instructional videos. With an intuitive approach that is not heavy on mathematical detail, Applied Regression Modeling, Second Edition is an excellent book for courses on statistical regression analysis at the upper-undergraduate and graduate level. The book also serves as a valuable resource for professionals and researchers who utilize statistical methods for decision-making in their everyday work.
Author |
: Rudolf Freund |
Publisher |
: John Wiley & Sons |
Total Pages |
: 258 |
Release |
: 2000-12-29 |
ISBN-10 |
: 9780471416647 |
ISBN-13 |
: 0471416649 |
Rating |
: 4/5 (47 Downloads) |
Synopsis SAS System for Regression by : Rudolf Freund
SAS® System for Regression Learn to perform a wide variety of regression analyses using SAS® software with this example-driven revised favorite from SAS Publishing. With this Third Edition you will learn the basics of performing regression analyses using a wide variety of models including nonlinear models. Other topics covered include performing linear regression analyses using PROC REG diagnosing and providing remedies for data problems, including outliers and multicollinearity. Examples feature numerous SAS procedures including REG, PLOT, GPLOT, NLIN, RSREG, AUTOREG, PRINCOMP, and others. A helpful discussion of theory is supplied where necessary. Some knowledge of both regression and the SAS System are assumed. New for this edition The Third Edition includes revisions, updated material, and new material. You’ll find new information on using SAS/INSIGHT® software regression with a binary response with emphasis on PROC LOGISTIC nonparametric regression (smoothing) using moving averages and PROC LOESS. Additionally, updated material throughout the book includes high-resolution PROC REG graphics output, using the OUTEST option to produce a data set, and using PROC SCORE to predict another data set.
Author |
: Richard B. Darlington |
Publisher |
: Guilford Publications |
Total Pages |
: 689 |
Release |
: 2016-08-22 |
ISBN-10 |
: 9781462527984 |
ISBN-13 |
: 1462527981 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Regression Analysis and Linear Models by : Richard B. Darlington
Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.
Author |
: Ding-Geng (Din) Chen |
Publisher |
: Springer Nature |
Total Pages |
: 239 |
Release |
: 2021-04-08 |
ISBN-10 |
: 9783030675837 |
ISBN-13 |
: 3030675831 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Statistical Regression Modeling with R by : Ding-Geng (Din) Chen
This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.
Author |
: Daniel Zelterman |
Publisher |
: Cambridge University Press |
Total Pages |
: 296 |
Release |
: 2022-05-12 |
ISBN-10 |
: 9781108786546 |
ISBN-13 |
: 1108786545 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Regression for Health and Social Science by : Daniel Zelterman
This textbook for students in the health and social sciences covers the basics of linear model methods with a minimum of mathematics, assuming only a pre-calculus background. Numerous examples drawn from the news and current events with an emphasis on health issues, illustrate the concepts in an immediately accessible way. Methods covered include linear regression models, Poisson regression, logistic regression, proportional hazards regression, survival analysis, and nonparametric regression. The author emphasizes interpretation of computer output in terms of the motivating example. All of the R code is provided and carefully explained, allowing readers to quickly apply the methods to their own data. Plenty of exercises help students think about the issues involved in the analysis and its interpretation. Code and datasets are available for download from the book's website at www.cambridge.org/zelterman
Author |
: Jordan Bakerman |
Publisher |
: |
Total Pages |
: 258 |
Release |
: 2019-12-09 |
ISBN-10 |
: 1642957151 |
ISBN-13 |
: 9781642957150 |
Rating |
: 4/5 (51 Downloads) |
Synopsis SAS Programming for R Users by : Jordan Bakerman
SAS Programming for R Users, based on the free SAS Education course of the same name, is designed for experienced R users who want to transfer their programming skills to SAS. Emphasis is on programming and not statistical theory or interpretation. You will learn how to write programs in SAS that replicate familiar functions and capabilities in R. This book covers a wide range of topics including the basics of the SAS programming language, how to import data, how to create new variables, random number generation, linear modeling, Interactive Matrix Language (IML), and many other SAS procedures. This book also explains how to write R code directly in the SAS code editor for seamless integration between the two tools. Exercises are provided at the end of each chapter so that you can test your knowledge and practice your programming skills.
Author |
: Edward W. Frees |
Publisher |
: Cambridge University Press |
Total Pages |
: 585 |
Release |
: 2010 |
ISBN-10 |
: 9780521760119 |
ISBN-13 |
: 0521760119 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Regression Modeling with Actuarial and Financial Applications by : Edward W. Frees
This book teaches multiple regression and time series and how to use these to analyze real data in risk management and finance.
Author |
: |
Publisher |
: |
Total Pages |
: 142 |
Release |
: 2019-06-21 |
ISBN-10 |
: 164295487X |
ISBN-13 |
: 9781642954876 |
Rating |
: 4/5 (7X Downloads) |
Synopsis Exploring Modern Regression Methods Using SAS by :
This special collection of SAS Global Forum papers demonstrates new and enhanced capabilities and applications of lesser-known SAS/STAT and SAS Viya procedures for regression models. The goal here is to raise awareness of current valuable SAS/STAT content of which the user may not be aware. Also available free as a PDF from sas.com/books.