Advanced Optimization For Process Systems Engineering
Download Advanced Optimization For Process Systems Engineering full books in PDF, epub, and Kindle. Read online free Advanced Optimization For Process Systems Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Ignacio E. Grossmann |
Publisher |
: Cambridge University Press |
Total Pages |
: 205 |
Release |
: 2021-03-25 |
ISBN-10 |
: 9781108831659 |
ISBN-13 |
: 1108831656 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Advanced Optimization for Process Systems Engineering by : Ignacio E. Grossmann
A unique text covering basic and advanced concepts of optimization theory and methods for process systems engineers. With examples illustrating key concepts and algorithms, and exercises involving theoretical derivations, numerical problems and modeling systems, it is ideal for single-semester, graduate courses in process systems engineering.
Author |
: Ignacio E. Grossmann |
Publisher |
: Cambridge University Press |
Total Pages |
: 206 |
Release |
: 2021-03-25 |
ISBN-10 |
: 9781108934732 |
ISBN-13 |
: 1108934730 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Advanced Optimization for Process Systems Engineering by : Ignacio E. Grossmann
Based on the author's forty years of teaching experience, this unique textbook covers both basic and advanced concepts of optimization theory and methods for process systems engineers. Topics covered include continuous, discrete and logic optimization (linear, nonlinear, mixed-integer and generalized disjunctive programming), optimization under uncertainty (stochastic programming and flexibility analysis), and decomposition techniques (Lagrangean and Benders decomposition). Assuming only a basic background in calculus and linear algebra, it enables easy understanding of mathematical reasoning, and numerous examples throughout illustrate key concepts and algorithms. End-of-chapter exercises involving theoretical derivations and small numerical problems, as well as in modeling systems like GAMS, enhance understanding and help put knowledge into practice. Accompanied by two appendices containing web links to modeling systems and models related to applications in PSE, this is an essential text for single-semester, graduate courses in process systems engineering in departments of chemical engineering.
Author |
: Jingzheng Ren |
Publisher |
: Elsevier |
Total Pages |
: 542 |
Release |
: 2021-06-05 |
ISBN-10 |
: 9780128217436 |
ISBN-13 |
: 012821743X |
Rating |
: 4/5 (36 Downloads) |
Synopsis Applications of Artificial Intelligence in Process Systems Engineering by : Jingzheng Ren
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Author |
: Stanislaw Sieniutycz |
Publisher |
: Elsevier |
Total Pages |
: 0 |
Release |
: 2013-02-12 |
ISBN-10 |
: 0080982212 |
ISBN-13 |
: 9780080982212 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Energy Optimization in Process Systems and Fuel Cells by : Stanislaw Sieniutycz
Energy Optimization in Process Systems and Fuel Cells, Second Edition covers the optimization and integration of energy systems, with a particular focus on fuel cell technology. With rising energy prices, imminent energy shortages, and increasing environmental impacts of energy production, energy optimization and systems integration is critically important. The book applies thermodynamics, kinetics and economics to study the effect of equipment size, environmental parameters, and economic factors on optimal power production and heat integration. Author Stanislaw Sieniutycz, highly recognized for his expertise and teaching, shows how costs can be substantially reduced, particularly in utilities common in the chemical industry. This second edition contains substantial revisions, with particular focus on the rapid progress in the field of fuel cells, related energy theory, and recent advances in the optimization and control of fuel cell systems.
Author |
: R. Venkata Rao |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 323 |
Release |
: 2012-01-14 |
ISBN-10 |
: 9781447127482 |
ISBN-13 |
: 144712748X |
Rating |
: 4/5 (82 Downloads) |
Synopsis Mechanical Design Optimization Using Advanced Optimization Techniques by : R. Venkata Rao
Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .
Author |
: Suman Dutta |
Publisher |
: Cambridge University Press |
Total Pages |
: 384 |
Release |
: 2016-03-11 |
ISBN-10 |
: 9781316691793 |
ISBN-13 |
: 1316691799 |
Rating |
: 4/5 (93 Downloads) |
Synopsis Optimization in Chemical Engineering by : Suman Dutta
Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimisation techniques is to measure the maximum or minimum value of a function depending on the circumstances. This book discusses problem formulation and problem solving with the help of algorithms such as secant method, quasi-Newton method, linear programming and dynamic programming. It also explains important chemical processes such as fluid flow systems, heat exchangers, chemical reactors and distillation systems using solved examples. The book begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg–Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies the multi-objective optimization technique and its applications in chemical engineering and also discusses the theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS.
Author |
: Fernando Israel Gómez-Castro |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 346 |
Release |
: 2019-10-21 |
ISBN-10 |
: 9783110596120 |
ISBN-13 |
: 3110596121 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Process Intensification by : Fernando Israel Gómez-Castro
Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.
Author |
: S. S. Rao |
Publisher |
: New Age International |
Total Pages |
: 936 |
Release |
: 2000 |
ISBN-10 |
: 8122411495 |
ISBN-13 |
: 9788122411492 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Engineering Optimization by : S. S. Rao
A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.
Author |
: Jun Ma |
Publisher |
: CRC Press |
Total Pages |
: 183 |
Release |
: 2020-01-24 |
ISBN-10 |
: 9781000037111 |
ISBN-13 |
: 1000037118 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Advanced Optimization for Motion Control Systems by : Jun Ma
Precision motion control is strongly required in many fields, such as precision engineering, micromanufacturing, biotechnology, and nanotechnology. Although great achievements have been made in control engineering, it is still challenging to fulfill the desired performance for precision motion control systems. Substantial works have been presented to reveal an increasing trend to apply optimization approaches in precision engineering to obtain the control system parameters. In this book, we present a result of several years of work in the area of advanced optimization for motion control systems. The book is organized into two parts: Part I focuses on the model-based approaches, and Part II presents the data-based approaches. To illustrate the practical appeal of the proposed optimization techniques, theoretical results are verified with practical examples in each chapter. Industrial problems explored in the book are formulated systematically with necessary analysis of the control system synthesis. By virtue of the design and implementation nature, this book can be used as a reference for engineers, researchers, and students who want to utilize control theories to solve the practical control problems. As the methodologies have extensive applicability in many control engineering problems, the research results in the field of optimization can be applied to full-fledged industrial processes, filling in the gap between research and application to achieve a technology frontier increment.
Author |
: Ravendra Singh |
Publisher |
: Elsevier |
Total Pages |
: 700 |
Release |
: 2018-03-16 |
ISBN-10 |
: 9780444639660 |
ISBN-13 |
: 0444639667 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Process Systems Engineering for Pharmaceutical Manufacturing by : Ravendra Singh
Process Systems Engineering for Pharmaceutical Manufacturing: From Product Design to Enterprise-Wide Decisions, Volume 41, covers the following process systems engineering methods and tools for the modernization of the pharmaceutical industry: computer-aided pharmaceutical product design and pharmaceutical production processes design/synthesis; modeling and simulation of the pharmaceutical processing unit operation, integrated flowsheets and applications for design, analysis, risk assessment, sensitivity analysis, optimization, design space identification and control system design; optimal operation, control and monitoring of pharmaceutical production processes; enterprise-wide optimization and supply chain management for pharmaceutical manufacturing processes. Currently, pharmaceutical companies are going through a paradigm shift, from traditional manufacturing mode to modernized mode, built on cutting edge technology and computer-aided methods and tools. Such shifts can benefit tremendously from the application of methods and tools of process systems engineering. - Introduces Process System Engineering (PSE) methods and tools for discovering, developing and deploying greener, safer, cost-effective and efficient pharmaceutical production processes - Includes a wide spectrum of case studies where different PSE tools and methods are used to improve various pharmaceutical production processes with distinct final products - Examines the future benefits and challenges for applying PSE methods and tools to pharmaceutical manufacturing