Advanced Computational Fluid and Aerodynamics

Advanced Computational Fluid and Aerodynamics
Author :
Publisher : Cambridge University Press
Total Pages : 589
Release :
ISBN-10 : 9781107075900
ISBN-13 : 1107075904
Rating : 4/5 (00 Downloads)

Synopsis Advanced Computational Fluid and Aerodynamics by : Paul G. Tucker

This book outlines the computational fluid dynamics evolution and gives an overview of the methods available to the engineer.

Computational Aerodynamics and Fluid Dynamics

Computational Aerodynamics and Fluid Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 210
Release :
ISBN-10 : 3540434941
ISBN-13 : 9783540434948
Rating : 4/5 (41 Downloads)

Synopsis Computational Aerodynamics and Fluid Dynamics by : Jean-Jacques Chattot

The book gives the reader the basis for understanding the way numerical schemes achieve accurate and stable simulations of physical phenomena. It is based on the finite-difference method and simple problems that allow also the analytic solutions to be worked out. ODEs as well as hyperbolic, parabolic and elliptic types are treated. The book builds on simple model equations and, pedagogically, on a host of problems given together with their solutions.

Computational Aerodynamics

Computational Aerodynamics
Author :
Publisher : Cambridge University Press
Total Pages : 627
Release :
ISBN-10 : 9781108837880
ISBN-13 : 1108837883
Rating : 4/5 (80 Downloads)

Synopsis Computational Aerodynamics by : Antony Jameson

Learn the design and analysis of numerical algorithms for aerodynamics. Ideal for graduates, researchers, and professionals in the field.

Unsteady Computational Fluid Dynamics in Aeronautics

Unsteady Computational Fluid Dynamics in Aeronautics
Author :
Publisher : Springer Science & Business Media
Total Pages : 432
Release :
ISBN-10 : 9789400770492
ISBN-13 : 9400770499
Rating : 4/5 (92 Downloads)

Synopsis Unsteady Computational Fluid Dynamics in Aeronautics by : P.G. Tucker

The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France

Advancement of Shock Capturing Computational Fluid Dynamics Methods

Advancement of Shock Capturing Computational Fluid Dynamics Methods
Author :
Publisher : Springer Nature
Total Pages : 136
Release :
ISBN-10 : 9789811590115
ISBN-13 : 9811590117
Rating : 4/5 (15 Downloads)

Synopsis Advancement of Shock Capturing Computational Fluid Dynamics Methods by : Keiichi Kitamura

This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases— multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author’s insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.

Computational Fluid Dynamics for Engineers and Scientists

Computational Fluid Dynamics for Engineers and Scientists
Author :
Publisher : Springer
Total Pages : 411
Release :
ISBN-10 : 9789402412178
ISBN-13 : 9402412174
Rating : 4/5 (78 Downloads)

Synopsis Computational Fluid Dynamics for Engineers and Scientists by : Sreenivas Jayanti

This book offers a practical, application-oriented introduction to computational fluid dynamics (CFD), with a focus on the concepts and principles encountered when using CFD in industry. Presuming no more knowledge than college-level understanding of the core subjects, the book puts together all the necessary topics to give the reader a comprehensive introduction to CFD. It includes discussion of the derivation of equations, grid generation and solution algorithms for compressible, incompressible and hypersonic flows. The final two chapters of the book are intended for the more advanced user. In the penultimate chapter, the special difficulties that arise while solving practical problems are addressed. Distinction is made between complications arising out of geometrical complexity and those arising out of the complexity of the physics (and chemistry) of the problem. The last chapter contains a brief discussion of what can be considered as the Holy Grail of CFD, namely, finding the optimal design of a fluid flow component. A number of problems are given at the end of each chapter to reinforce the concepts and ideas discussed in that chapter. CFD has come of age and is widely used in industry as well as in academia as an analytical tool to investigate a wide range of fluid flow problems. This book is written for two groups: for those students who are encountering CFD for the first time in the form of a taught lecture course, and for those practising engineers and scientists who are already using CFD as an analysis tool in their professions but would like to deepen and broaden their understanding of the subject.

Computational Fluid Dynamics

Computational Fluid Dynamics
Author :
Publisher : Elsevier
Total Pages : 491
Release :
ISBN-10 : 9780080529677
ISBN-13 : 0080529674
Rating : 4/5 (77 Downloads)

Synopsis Computational Fluid Dynamics by : Jiri Blazek

Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.

Optimization and Computational Fluid Dynamics

Optimization and Computational Fluid Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 301
Release :
ISBN-10 : 9783540721536
ISBN-13 : 3540721533
Rating : 4/5 (36 Downloads)

Synopsis Optimization and Computational Fluid Dynamics by : Dominique Thévenin

The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.

Applied Computational Fluid Dynamics and Turbulence Modeling

Applied Computational Fluid Dynamics and Turbulence Modeling
Author :
Publisher : Springer Nature
Total Pages : 316
Release :
ISBN-10 : 9783030286910
ISBN-13 : 3030286916
Rating : 4/5 (10 Downloads)

Synopsis Applied Computational Fluid Dynamics and Turbulence Modeling by : Sal Rodriguez

This unique text provides engineering students and practicing professionals with a comprehensive set of practical, hands-on guidelines and dozens of step-by-step examples for performing state-of-the-art, reliable computational fluid dynamics (CFD) and turbulence modeling. Key CFD and turbulence programs are included as well. The text first reviews basic CFD theory, and then details advanced applied theories for estimating turbulence, including new algorithms created by the author. The book gives practical advice on selecting appropriate turbulence models and presents best CFD practices for modeling and generating reliable simulations. The author gathered and developed the book’s hundreds of tips, tricks, and examples over three decades of research and development at three national laboratories and at the University of New Mexico—many in print for the first time in this book. The book also places a strong emphasis on recent CFD and turbulence advancements found in the literature over the past five to 10 years. Readers can apply the author’s advice and insights whether using commercial or national laboratory software such as ANSYS Fluent, STAR-CCM, COMSOL, Flownex, SimScale, OpenFOAM, Fuego, KIVA, BIGHORN, or their own computational tools. Applied Computational Fluid Dynamics and Turbulence Modeling is a practical, complementary companion for academic CFD textbooks and senior project courses in mechanical, civil, chemical, and nuclear engineering; senior undergraduate and graduate CFD and turbulence modeling courses; and for professionals developing commercial and research applications.

Computational Fluid Mechanics and Heat Transfer, Second Edition

Computational Fluid Mechanics and Heat Transfer, Second Edition
Author :
Publisher : CRC Press
Total Pages : 828
Release :
ISBN-10 : 156032046X
ISBN-13 : 9781560320463
Rating : 4/5 (6X Downloads)

Synopsis Computational Fluid Mechanics and Heat Transfer, Second Edition by : Richard H. Pletcher

This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.