Advance Your Career in Data Science

Advance Your Career in Data Science
Author :
Publisher : Henry Harvin
Total Pages : 446
Release :
ISBN-10 : 9788194876892
ISBN-13 : 8194876893
Rating : 4/5 (92 Downloads)

Synopsis Advance Your Career in Data Science by : Henry Harvin

Data science is the study of data to derive useful business insights. In order to analyze massive volumes of data, this multidisciplinary approach incorporates ideas and methods from the domains of mathematics, statistics, artificial intelligence, and computer engineering. You must be introduced to the many components to "Advance Your Career With Data Science" first. You will learn about the statistics that are applied in the area and how to use them practically from this book. Also, this book will assist you in concentrating on the most fundamental aspects of data science for a better grasp of the field.

Build a Career in Data Science

Build a Career in Data Science
Author :
Publisher : Manning
Total Pages : 352
Release :
ISBN-10 : 9781617296246
ISBN-13 : 1617296244
Rating : 4/5 (46 Downloads)

Synopsis Build a Career in Data Science by : Emily Robinson

Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder

How to Lead in Data Science

How to Lead in Data Science
Author :
Publisher : Simon and Schuster
Total Pages : 823
Release :
ISBN-10 : 9781638356806
ISBN-13 : 1638356807
Rating : 4/5 (06 Downloads)

Synopsis How to Lead in Data Science by : Jike Chong

A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook

Data Science from Scratch

Data Science from Scratch
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 336
Release :
ISBN-10 : 9781491904398
ISBN-13 : 1491904399
Rating : 4/5 (98 Downloads)

Synopsis Data Science from Scratch by : Joel Grus

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

R for Data Science

R for Data Science
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 521
Release :
ISBN-10 : 9781491910368
ISBN-13 : 1491910364
Rating : 4/5 (68 Downloads)

Synopsis R for Data Science by : Hadley Wickham

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Data Science

Data Science
Author :
Publisher : John Wiley & Sons
Total Pages : 208
Release :
ISBN-10 : 9781119544081
ISBN-13 : 1119544084
Rating : 4/5 (81 Downloads)

Synopsis Data Science by : Field Cady

Tap into the power of data science with this comprehensive resource for non-technical professionals Data Science: The Executive Summary – A Technical Book for Non-Technical Professionals is a comprehensive resource for people in non-engineer roles who want to fully understand data science and analytics concepts. Accomplished data scientist and author Field Cady describes both the “business side” of data science, including what problems it solves and how it fits into an organization, and the technical side, including analytical techniques and key technologies. Data Science: The Executive Summary covers topics like: Assessing whether your organization needs data scientists, and what to look for when hiring them When Big Data is the best approach to use for a project, and when it actually ties analysts’ hands Cutting edge Artificial Intelligence, as well as classical approaches that work better for many problems How many techniques rely on dubious mathematical idealizations, and when you can work around them Perfect for executives who make critical decisions based on data science and analytics, as well as mangers who hire and assess the work of data scientists, Data Science: The Executive Summary also belongs on the bookshelves of salespeople and marketers who need to explain what a data analytics product does. Finally, data scientists themselves will improve their technical work with insights into the goals and constraints of the business situation.

AI and Machine Learning for Coders

AI and Machine Learning for Coders
Author :
Publisher : O'Reilly Media
Total Pages : 393
Release :
ISBN-10 : 9781492078166
ISBN-13 : 1492078166
Rating : 4/5 (66 Downloads)

Synopsis AI and Machine Learning for Coders by : Laurence Moroney

If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving

Multivariable Calculus

Multivariable Calculus
Author :
Publisher : Brooks/Cole
Total Pages : 592
Release :
ISBN-10 : 0538498862
ISBN-13 : 9780538498869
Rating : 4/5 (62 Downloads)

Synopsis Multivariable Calculus by : James Stewart

Success in your calculus course starts here! James Stewart's CALCULUS, 7e, International Metric texts are world-wide best-sellers for a reason: they are clear, accurate, and filled with relevant, real-world examples. With MULTIVARIABLE CALCULUS, 7e, International Metric Edition Stewart conveys not only the utility of calculus to help you develop technical competence, but also gives you an appreciation for the intrinsic beauty of the subject. His patient examples and built-in learning aids will help you build your mathematical confidence and achieve your goals in the course!

Key Productivity and Performance Strategies to Advance Your Career

Key Productivity and Performance Strategies to Advance Your Career
Author :
Publisher : Academic Press
Total Pages : 96
Release :
ISBN-10 : 9780127999562
ISBN-13 : 0127999566
Rating : 4/5 (62 Downloads)

Synopsis Key Productivity and Performance Strategies to Advance Your Career by : Lesia L. Crumpton-Young

Key Productivity and Performance Strategies to Advance Your STEM Career shares valuable knowledge and insights on best practices used by high performing individuals in the STEM fields to enhance their professional endeavors. The strategies contained in this book are based on Lesia L. Crumpton-Young's experience and expertise as a STEM professional and a certified Life and Career Coach. The book includes real-life examples from STEM professionals of career hurdles and efficient solutions to reaching your career goals. It covers effective goal setting, decision-making, and how best to overcome doubt and criticism, as well as practical advice on critical path analysis. Finally, the book includes a five-year career planning tool, along with additional problem statements and exercises, making it a valuable resource those involved in the STEM fields.

Data Science For Dummies

Data Science For Dummies
Author :
Publisher : John Wiley & Sons
Total Pages : 436
Release :
ISBN-10 : 9781119811619
ISBN-13 : 1119811619
Rating : 4/5 (19 Downloads)

Synopsis Data Science For Dummies by : Lillian Pierson

Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.