A Unified Signal Algebra Approach to Two-Dimensional Parallel Digital Signal Processing

A Unified Signal Algebra Approach to Two-Dimensional Parallel Digital Signal Processing
Author :
Publisher : CRC Press
Total Pages : 312
Release :
ISBN-10 : 0824700252
ISBN-13 : 9780824700256
Rating : 4/5 (52 Downloads)

Synopsis A Unified Signal Algebra Approach to Two-Dimensional Parallel Digital Signal Processing by : Louis A. D'Alotto

Aims to bridge the gap between parallel computer architectures and the creation of parallel digital signal processing (DSP) algorithms. This work offers an approach to digital signal processing utilizing the unified signal algebra environment to develop naturally occurring parallel DSP algorithms.;College or university book shops may order five or more copies at a special student price. Price is available on request.

Many-Sorted Algebras for Deep Learning and Quantum Technology

Many-Sorted Algebras for Deep Learning and Quantum Technology
Author :
Publisher : Elsevier
Total Pages : 423
Release :
ISBN-10 : 9780443136986
ISBN-13 : 044313698X
Rating : 4/5 (86 Downloads)

Synopsis Many-Sorted Algebras for Deep Learning and Quantum Technology by : Charles R. Giardina

Many-Sorted Algebras for Deep Learning and Quantum Technology presents a precise and rigorous description of basic concepts in Quantum technologies and how they relate to Deep Learning and Quantum Theory. Current merging of Quantum Theory and Deep Learning techniques provides a need for a text that can give readers insight into the algebraic underpinnings of these disciplines. Although analytical, topological, probabilistic, as well as geometrical concepts are employed in many of these areas, algebra exhibits the principal thread. This thread is exposed using Many-Sorted Algebras (MSA). In almost every aspect of Quantum Theory as well as Deep Learning more than one sort or type of object is involved. For instance, in Quantum areas Hilbert spaces require two sorts, while in affine spaces, three sorts are needed. Both a global level and a local level of precise specification is described using MSA. At a local level operation involving neural nets may appear to be very algebraically different than those used in Quantum systems, but at a global level they may be identical. Again, MSA is well equipped to easily detail their equivalence through text as well as visual diagrams. Among the reasons for using MSA is in illustrating this sameness. Author Charles R. Giardina includes hundreds of well-designed examples in the text to illustrate the intriguing concepts in Quantum systems. Along with these examples are numerous visual displays. In particular, the Polyadic Graph shows the types or sorts of objects used in Quantum or Deep Learning. It also illustrates all the inter and intra sort operations needed in describing algebras. In brief, it provides the closure conditions. Throughout the text, all laws or equational identities needed in specifying an algebraic structure are precisely described. - Includes hundreds of well-designed examples to illustrate the intriguing concepts in quantum systems - Provides precise description of all laws or equational identities that are needed in specifying an algebraic structure - Illustrates all the inter and intra sort operations needed in describing algebras

Abstract Algebra

Abstract Algebra
Author :
Publisher : CRC Press
Total Pages : 784
Release :
ISBN-10 : 9781351991469
ISBN-13 : 1351991469
Rating : 4/5 (69 Downloads)

Synopsis Abstract Algebra by : Claudia Menini

In one exceptional volume, Abstract Algebra covers subject matter typically taught over the course of two or three years and offers a self-contained presentation, detailed definitions, and excellent chapter-matched exercises to smooth the trajectory of learning algebra from zero to one. Field-tested through advance use in the ERASMUS educational project in Europe, this ambitious, comprehensive book includes an original treatment of representation of finite groups that avoids the use of semisimple ring theory and explains sets, maps, posets, lattices, and other essentials of the algebraic language; Peano's axioms and cardinality; groupoids, semigroups, monoids, groups; and normal subgroups.

Hopf Algebra

Hopf Algebra
Author :
Publisher : CRC Press
Total Pages : 428
Release :
ISBN-10 : 0824704819
ISBN-13 : 9780824704810
Rating : 4/5 (19 Downloads)

Synopsis Hopf Algebra by : Sorin Dascalescu

This study covers comodules, rational modules and bicomodules; cosemisimple, semiperfect and co-Frobenius algebras; bialgebras and Hopf algebras; actions and coactions of Hopf algebras on algebras; finite dimensional Hopf algebras, with the Nicholas-Zoeller and Taft-Wilson theorems and character theory; and more.

A Primer of Algebraic Geometry

A Primer of Algebraic Geometry
Author :
Publisher : CRC Press
Total Pages : 398
Release :
ISBN-10 : 9781351990950
ISBN-13 : 1351990950
Rating : 4/5 (50 Downloads)

Synopsis A Primer of Algebraic Geometry by : Huishi Li

"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."

Algebraic Geometry for Associative Algebras

Algebraic Geometry for Associative Algebras
Author :
Publisher : CRC Press
Total Pages : 302
Release :
ISBN-10 : 9781482270525
ISBN-13 : 1482270528
Rating : 4/5 (25 Downloads)

Synopsis Algebraic Geometry for Associative Algebras by : Freddy Van Oystaeyen

This work focuses on the association of methods from topology, category and sheaf theory, algebraic geometry, noncommutative and homological algebras, quantum groups and spaces, rings of differential operation, Cech and sheaf cohomology theories, and dimension theories to create a blend of noncommutative algebraic geometry. It offers a scheme theor

Algebraic Generalizations of Discrete Groups

Algebraic Generalizations of Discrete Groups
Author :
Publisher : CRC Press
Total Pages : 338
Release :
ISBN-10 : 0824703197
ISBN-13 : 9780824703196
Rating : 4/5 (97 Downloads)

Synopsis Algebraic Generalizations of Discrete Groups by : Benjamin Fine

A survey of one-relator products of cyclics or groups with a single defining relation, extending the algebraic study of Fuchsian groups to the more general context of one-relator products and related group theoretical considerations. It provides a self-contained account of certain natural generalizations of discrete groups.

A First Graduate Course in Abstract Algebra

A First Graduate Course in Abstract Algebra
Author :
Publisher : CRC Press
Total Pages : 232
Release :
ISBN-10 : 9780824757182
ISBN-13 : 0824757181
Rating : 4/5 (82 Downloads)

Synopsis A First Graduate Course in Abstract Algebra by : William Jennings Wickless

Realizing the specific needs of first-year graduate students, this reference allows readers to grasp and master fundamental concepts in abstract algebra-establishing a clear understanding of basic linear algebra and number, group, and commutative ring theory and progressing to sophisticated discussions on Galois and Sylow theory, the structure of abelian groups, the Jordan canonical form, and linear transformations and their matrix representations.

Geometric Function Theory in One and Higher Dimensions

Geometric Function Theory in One and Higher Dimensions
Author :
Publisher : CRC Press
Total Pages : 572
Release :
ISBN-10 : 0203911628
ISBN-13 : 9780203911624
Rating : 4/5 (28 Downloads)

Synopsis Geometric Function Theory in One and Higher Dimensions by : Ian Graham

This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Caratheodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the in

Theory Of Difference Equations Numerical Methods And Applications

Theory Of Difference Equations Numerical Methods And Applications
Author :
Publisher : CRC Press
Total Pages : 328
Release :
ISBN-10 : 020391029X
ISBN-13 : 9780203910290
Rating : 4/5 (9X Downloads)

Synopsis Theory Of Difference Equations Numerical Methods And Applications by : V. Lakshmikantham

"Provides a clear and comprehensive overview of the fundamental theories, numerical methods, and iterative processes encountered in difference calculus. Explores classical problems such as orthological polynomials, the Euclidean algorithm, roots of polynomials, and well-conditioning."