A TeXas Style Introduction to Proof

A TeXas Style Introduction to Proof
Author :
Publisher : American Mathematical Soc.
Total Pages : 177
Release :
ISBN-10 : 9781470450465
ISBN-13 : 1470450461
Rating : 4/5 (65 Downloads)

Synopsis A TeXas Style Introduction to Proof by : Ron Taylor

A TeXas Style Introduction to Proof is an IBL textbook designed for a one-semester course on proofs (the “bridge course”) that also introduces TeX as a tool students can use to communicate their work. As befitting “textless” text, the book is, as one reviewer characterized it, “minimal.” Written in an easy-going style, the exposition is just enough to support the activities, and it is clear, concise, and effective. The book is well organized and contains ample carefully selected exercises that are varied, interesting, and probing, without being discouragingly difficult.

Book of Proof

Book of Proof
Author :
Publisher :
Total Pages : 314
Release :
ISBN-10 : 0989472116
ISBN-13 : 9780989472111
Rating : 4/5 (16 Downloads)

Synopsis Book of Proof by : Richard H. Hammack

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Proofs from THE BOOK

Proofs from THE BOOK
Author :
Publisher : Springer Science & Business Media
Total Pages : 194
Release :
ISBN-10 : 9783662223437
ISBN-13 : 3662223430
Rating : 4/5 (37 Downloads)

Synopsis Proofs from THE BOOK by : Martin Aigner

According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.

Proofs and Refutations

Proofs and Refutations
Author :
Publisher : Cambridge University Press
Total Pages : 190
Release :
ISBN-10 : 0521290384
ISBN-13 : 9780521290388
Rating : 4/5 (84 Downloads)

Synopsis Proofs and Refutations by : Imre Lakatos

Proofs and Refutations is for those interested in the methodology, philosophy and history of mathematics.

Analysis with an Introduction to Proof

Analysis with an Introduction to Proof
Author :
Publisher : Pearson
Total Pages : 401
Release :
ISBN-10 : 9780321998149
ISBN-13 : 0321998146
Rating : 4/5 (49 Downloads)

Synopsis Analysis with an Introduction to Proof by : Steven R. Lay

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For courses in undergraduate Analysis and Transition to Advanced Mathematics. Analysis with an Introduction to Proof, Fifth Edition helps fill in the groundwork students need to succeed in real analysis—often considered the most difficult course in the undergraduate curriculum. By introducing logic and emphasizing the structure and nature of the arguments used, this text helps students move carefully from computationally oriented courses to abstract mathematics with its emphasis on proofs. Clear expositions and examples, helpful practice problems, numerous drawings, and selected hints/answers make this text readable, student-oriented, and teacher- friendly.

The Knot Book

The Knot Book
Author :
Publisher : American Mathematical Soc.
Total Pages : 330
Release :
ISBN-10 : 9780821836781
ISBN-13 : 0821836781
Rating : 4/5 (81 Downloads)

Synopsis The Knot Book by : Colin Conrad Adams

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.

An Introduction to the Mathematical Theory of Waves

An Introduction to the Mathematical Theory of Waves
Author :
Publisher : American Mathematical Soc.
Total Pages : 212
Release :
ISBN-10 : 9780821820391
ISBN-13 : 0821820397
Rating : 4/5 (91 Downloads)

Synopsis An Introduction to the Mathematical Theory of Waves by : Roger Knobel

This book is based on an undergraduate course taught at the IAS/Park City Mathematics Institute (Utah) on linear and nonlinear waves. The first part of the text overviews the concept of a wave, describes one-dimensional waves using functions of two variables, provides an introduction to partial differential equations, and discusses computer-aided visualization techniques. The second part of the book discusses traveling waves, leading to a description of solitary waves and soliton solutions of the Klein-Gordon and Korteweg-deVries equations. The wave equation is derived to model the small vibrations of a taut string, and solutions are constructed via d'Alembert's formula and Fourier series.The last part of the book discusses waves arising from conservation laws. After deriving and discussing the scalar conservation law, its solution is described using the method of characteristics, leading to the formation of shock and rarefaction waves. Applications of these concepts are then given for models of traffic flow. The intent of this book is to create a text suitable for independent study by undergraduate students in mathematics, engineering, and science. The content of the book is meant to be self-contained, requiring no special reference material. Access to computer software such as MathematicaR, MATLABR, or MapleR is recommended, but not necessary. Scripts for MATLAB applications will be available via the Web. Exercises are given within the text to allow further practice with selected topics.

Reading, Writing, and Proving

Reading, Writing, and Proving
Author :
Publisher : Springer Science & Business Media
Total Pages : 391
Release :
ISBN-10 : 9780387215600
ISBN-13 : 0387215603
Rating : 4/5 (00 Downloads)

Synopsis Reading, Writing, and Proving by : Ulrich Daepp

This book, based on Pólya's method of problem solving, aids students in their transition to higher-level mathematics. It begins by providing a great deal of guidance on how to approach definitions, examples, and theorems in mathematics and ends by providing projects for independent study. Students will follow Pólya's four step process: learn to understand the problem; devise a plan to solve the problem; carry out that plan; and look back and check what the results told them.

An Introduction to Mathematical Analysis for Economic Theory and Econometrics

An Introduction to Mathematical Analysis for Economic Theory and Econometrics
Author :
Publisher : Princeton University Press
Total Pages : 696
Release :
ISBN-10 : 9781400833085
ISBN-13 : 1400833086
Rating : 4/5 (85 Downloads)

Synopsis An Introduction to Mathematical Analysis for Economic Theory and Econometrics by : Dean Corbae

Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory

The Cauchy-Schwarz Master Class

The Cauchy-Schwarz Master Class
Author :
Publisher : Cambridge University Press
Total Pages : 320
Release :
ISBN-10 : 052154677X
ISBN-13 : 9780521546775
Rating : 4/5 (7X Downloads)

Synopsis The Cauchy-Schwarz Master Class by : J. Michael Steele

This lively, problem-oriented text, first published in 2004, is designed to coach readers toward mastery of the most fundamental mathematical inequalities. With the Cauchy-Schwarz inequality as the initial guide, the reader is led through a sequence of fascinating problems whose solutions are presented as they might have been discovered - either by one of history's famous mathematicians or by the reader. The problems emphasize beauty and surprise, but along the way readers will find systematic coverage of the geometry of squares, convexity, the ladder of power means, majorization, Schur convexity, exponential sums, and the inequalities of Hölder, Hilbert, and Hardy. The text is accessible to anyone who knows calculus and who cares about solving problems. It is well suited to self-study, directed study, or as a supplement to courses in analysis, probability, and combinatorics.