A Mathematical View of Interior-point Methods in Convex Optimization

A Mathematical View of Interior-point Methods in Convex Optimization
Author :
Publisher : SIAM
Total Pages : 124
Release :
ISBN-10 : 0898718813
ISBN-13 : 9780898718812
Rating : 4/5 (13 Downloads)

Synopsis A Mathematical View of Interior-point Methods in Convex Optimization by : James Renegar

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming
Author :
Publisher : SIAM
Total Pages : 414
Release :
ISBN-10 : 1611970792
ISBN-13 : 9781611970791
Rating : 4/5 (92 Downloads)

Synopsis Interior-point Polynomial Algorithms in Convex Programming by : Yurii Nesterov

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Interior Point Approach to Linear, Quadratic and Convex Programming

Interior Point Approach to Linear, Quadratic and Convex Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 214
Release :
ISBN-10 : 9789401111348
ISBN-13 : 9401111340
Rating : 4/5 (48 Downloads)

Synopsis Interior Point Approach to Linear, Quadratic and Convex Programming by : D. den Hertog

This book describes the rapidly developing field of interior point methods (IPMs). An extensive analysis is given of path-following methods for linear programming, quadratic programming and convex programming. These methods, which form a subclass of interior point methods, follow the central path, which is an analytic curve defined by the problem. Relatively simple and elegant proofs for polynomiality are given. The theory is illustrated using several explicit examples. Moreover, an overview of other classes of IPMs is given. It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum. For specialists in IPMs as well as those seeking an introduction to IPMs. The book is accessible to any mathematician with basic mathematical programming knowledge.

Lectures on Modern Convex Optimization

Lectures on Modern Convex Optimization
Author :
Publisher : SIAM
Total Pages : 500
Release :
ISBN-10 : 9780898714913
ISBN-13 : 0898714915
Rating : 4/5 (13 Downloads)

Synopsis Lectures on Modern Convex Optimization by : Aharon Ben-Tal

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

A Mathematical View of Interior-Point Methods in Convex Optimization

A Mathematical View of Interior-Point Methods in Convex Optimization
Author :
Publisher : SIAM
Total Pages : 122
Release :
ISBN-10 : 9780898715026
ISBN-13 : 0898715024
Rating : 4/5 (26 Downloads)

Synopsis A Mathematical View of Interior-Point Methods in Convex Optimization by : James Renegar

Takes the reader who knows little of interior-point methods to within sight of the research frontier.

Interior Point Algorithms

Interior Point Algorithms
Author :
Publisher : John Wiley & Sons
Total Pages : 440
Release :
ISBN-10 : 9781118030950
ISBN-13 : 1118030958
Rating : 4/5 (50 Downloads)

Synopsis Interior Point Algorithms by : Yinyu Ye

The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.

Algorithms for Convex Optimization

Algorithms for Convex Optimization
Author :
Publisher : Cambridge University Press
Total Pages : 314
Release :
ISBN-10 : 9781108633994
ISBN-13 : 1108633994
Rating : 4/5 (94 Downloads)

Synopsis Algorithms for Convex Optimization by : Nisheeth K. Vishnoi

In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.

Primal-dual Interior-Point Methods

Primal-dual Interior-Point Methods
Author :
Publisher : SIAM
Total Pages : 309
Release :
ISBN-10 : 1611971454
ISBN-13 : 9781611971453
Rating : 4/5 (54 Downloads)

Synopsis Primal-dual Interior-Point Methods by : Stephen J. Wright

In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.

Interior Point Methods for Linear Optimization

Interior Point Methods for Linear Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 501
Release :
ISBN-10 : 9780387263793
ISBN-13 : 0387263799
Rating : 4/5 (93 Downloads)

Synopsis Interior Point Methods for Linear Optimization by : Cornelis Roos

The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.

Lectures on Convex Optimization

Lectures on Convex Optimization
Author :
Publisher : Springer
Total Pages : 603
Release :
ISBN-10 : 9783319915784
ISBN-13 : 3319915789
Rating : 4/5 (84 Downloads)

Synopsis Lectures on Convex Optimization by : Yurii Nesterov

This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.