A Geometric Ito Formula
Download A Geometric Ito Formula full books in PDF, epub, and Kindle. Read online free A Geometric Ito Formula ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Fima C. Klebaner |
Publisher |
: Imperial College Press |
Total Pages |
: 431 |
Release |
: 2005 |
ISBN-10 |
: 9781860945557 |
ISBN-13 |
: 1860945554 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Introduction to Stochastic Calculus with Applications by : Fima C. Klebaner
This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.
Author |
: Pedro J. Catuogno |
Publisher |
: |
Total Pages |
: 20 |
Release |
: 2005 |
ISBN-10 |
: UOM:39015060801597 |
ISBN-13 |
: |
Rating |
: 4/5 (97 Downloads) |
Synopsis A Geometric Itô Formula by : Pedro J. Catuogno
Author |
: Robert P. Dobrow |
Publisher |
: John Wiley & Sons |
Total Pages |
: 504 |
Release |
: 2016-03-07 |
ISBN-10 |
: 9781118740651 |
ISBN-13 |
: 1118740653 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Introduction to Stochastic Processes with R by : Robert P. Dobrow
An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.
Author |
: Steven Shreve |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2010-12-01 |
ISBN-10 |
: 144192311X |
ISBN-13 |
: 9781441923110 |
Rating |
: 4/5 (1X Downloads) |
Synopsis Stochastic Calculus for Finance II by : Steven Shreve
"A wonderful display of the use of mathematical probability to derive a large set of results from a small set of assumptions. In summary, this is a well-written text that treats the key classical models of finance through an applied probability approach....It should serve as an excellent introduction for anyone studying the mathematics of the classical theory of finance." --SIAM
Author |
: Thomas Mikosch |
Publisher |
: World Scientific |
Total Pages |
: 230 |
Release |
: 1998 |
ISBN-10 |
: 9810235437 |
ISBN-13 |
: 9789810235437 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Elementary Stochastic Calculus with Finance in View by : Thomas Mikosch
Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.
Author |
: Ioannis Karatzas |
Publisher |
: Springer |
Total Pages |
: 490 |
Release |
: 2014-03-27 |
ISBN-10 |
: 9781461209492 |
ISBN-13 |
: 1461209498 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Brownian Motion and Stochastic Calculus by : Ioannis Karatzas
A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.
Author |
: J. Michael Steele |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 303 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781468493054 |
ISBN-13 |
: 1468493051 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Stochastic Calculus and Financial Applications by : J. Michael Steele
Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH
Author |
: Bernt Oksendal |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 218 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9783662130506 |
ISBN-13 |
: 3662130505 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Stochastic Differential Equations by : Bernt Oksendal
These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.
Author |
: Kiyosi Itô |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 56 |
Release |
: 1951 |
ISBN-10 |
: 9780821812044 |
ISBN-13 |
: 0821812041 |
Rating |
: 4/5 (44 Downloads) |
Synopsis On Stochastic Differential Equations by : Kiyosi Itô
Author |
: Grigorios A. Pavliotis |
Publisher |
: Springer |
Total Pages |
: 345 |
Release |
: 2014-11-19 |
ISBN-10 |
: 9781493913237 |
ISBN-13 |
: 1493913239 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.