A Gentle Introduction to Optimization

A Gentle Introduction to Optimization
Author :
Publisher : Cambridge University Press
Total Pages : 283
Release :
ISBN-10 : 9781139992992
ISBN-13 : 1139992996
Rating : 4/5 (92 Downloads)

Synopsis A Gentle Introduction to Optimization by : B. Guenin

Optimization is an essential technique for solving problems in areas as diverse as accounting, computer science and engineering. Assuming only basic linear algebra and with a clear focus on the fundamental concepts, this textbook is the perfect starting point for first- and second-year undergraduate students from a wide range of backgrounds and with varying levels of ability. Modern, real-world examples motivate the theory throughout. The authors keep the text as concise and focused as possible, with more advanced material treated separately or in starred exercises. Chapters are self-contained so that instructors and students can adapt the material to suit their own needs and a wide selection of over 140 exercises gives readers the opportunity to try out the skills they gain in each section. Solutions are available for instructors. The book also provides suggestions for further reading to help students take the next step to more advanced material.

A Gentle Introduction to Scientific Computing

A Gentle Introduction to Scientific Computing
Author :
Publisher : CRC Press
Total Pages : 241
Release :
ISBN-10 : 9780429557934
ISBN-13 : 0429557930
Rating : 4/5 (34 Downloads)

Synopsis A Gentle Introduction to Scientific Computing by : Dan Stanescu

Scientific Computation has established itself as a stand-alone area of knowledge at the borderline between computer science and applied mathematics. Nonetheless, its interdisciplinary character cannot be denied: its methodologies are increasingly used in a wide variety of branches of science and engineering. A Gentle Introduction to Scientific Computing intends to serve a very broad audience of college students across a variety of disciplines. It aims to expose its readers to some of the basic tools and techniques used in computational science, with a view to helping them understand what happens "behind the scenes" when simple tools such as solving equations, plotting and interpolation are used. To make the book as practical as possible, the authors explore their subject both from a theoretical, mathematical perspective and from an implementation-driven, programming perspective. Features Middle-ground approach between theory and implementation. Suitable reading for a broad range of students in STEM disciplines. Could be used as the primary text for a first course in scientific computing. Introduces mathematics majors, without any prior computer science exposure, to numerical methods. All mathematical knowledge needed beyond Calculus (together with the most widely used Calculus notation and concepts) is introduced in the text to make it self-contained.

Linear Optimization and Duality

Linear Optimization and Duality
Author :
Publisher : CRC Press
Total Pages : 587
Release :
ISBN-10 : 9781439887479
ISBN-13 : 1439887470
Rating : 4/5 (79 Downloads)

Synopsis Linear Optimization and Duality by : Craig A. Tovey

Linear Optimization and Dualiyy: A Modern Exposition departs from convention in significant ways. Standard linear programming textbooks present the material in the order in which it was discovered. Duality is treated as a difficult add-on after coverage of formulation, the simplex method, and polyhedral theory. Students end up without knowing duality in their bones. This text brings in duality in Chapter 1 and carries duality all the way through the exposition. Chapter 1 gives a general definition of duality that shows the dual aspects of a matrix as a column of rows and a row of columns. The proof of weak duality in Chapter 2 is shown via the Lagrangian, which relies on matrix duality. The first three LP formulation examples in Chapter 3 are classic primal-dual pairs including the diet problem and 2-person zero sum games. For many engineering students, optimization is their first immersion in rigorous mathematics. Conventional texts assume a level of mathematical sophistication they don’t have. This text embeds dozens of reading tips and hundreds of answered questions to guide such students. Features Emphasis on duality throughout Practical tips for modeling and computation Coverage of computational complexity and data structures Exercises and problems based on the learning theory concept of the zone of proximal development Guidance for the mathematically unsophisticated reader About the Author Craig A. Tovey is a professor in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Institute of Technology. Dr. Tovey received an AB from Harvard College, an MS in computer science and a PhD in operations research from Stanford University. His principal activities are in operations research and its interdisciplinary applications. He received a Presidential Young Investigator Award and the Jacob Wolfowitz Prize for research in heuristics. He was named an Institute Fellow at Georgia Tech, and was recognized by the ACM Special Interest Group on Electronic Commerce with the Test of Time Award. Dr. Tovey received the 2016 Golden Goose Award for his research on bee foraging behavior leading to the development of the Honey Bee Algorithm.

Convex Optimization

Convex Optimization
Author :
Publisher : Foundations and Trends (R) in Machine Learning
Total Pages : 142
Release :
ISBN-10 : 1601988605
ISBN-13 : 9781601988607
Rating : 4/5 (05 Downloads)

Synopsis Convex Optimization by : Sébastien Bubeck

This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.

Genetic Algorithms in Search, Optimization, and Machine Learning

Genetic Algorithms in Search, Optimization, and Machine Learning
Author :
Publisher : Addison-Wesley Professional
Total Pages : 436
Release :
ISBN-10 : UOM:39015023852034
ISBN-13 :
Rating : 4/5 (34 Downloads)

Synopsis Genetic Algorithms in Search, Optimization, and Machine Learning by : David Edward Goldberg

A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.

An Introduction to Linear Programming and Game Theory

An Introduction to Linear Programming and Game Theory
Author :
Publisher : John Wiley & Sons
Total Pages : 476
Release :
ISBN-10 : 9781118165454
ISBN-13 : 1118165454
Rating : 4/5 (54 Downloads)

Synopsis An Introduction to Linear Programming and Game Theory by : Paul R. Thie

Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.

Introduction to Mathematical Optimization

Introduction to Mathematical Optimization
Author :
Publisher :
Total Pages : 232
Release :
ISBN-10 : 1692792024
ISBN-13 : 9781692792022
Rating : 4/5 (24 Downloads)

Synopsis Introduction to Mathematical Optimization by : Matteo Fischetti

This book is intended to be a teaching aid for students of the courses in Operations Research and Mathematical Optimization for scientific faculties. Some of the basic topics of Operations Research and Optimization are considered: Linear Programming, Integer Linear Programming, Computational Complexity, and Graph Theory. Particular emphasis is given to Integer Linear Programming, with an exposition of the most recent resolution techniques, and in particular of the branch-and-cut method. The work is accompanied by numerous examples and exercises.

Convex Optimization

Convex Optimization
Author :
Publisher : Cambridge University Press
Total Pages : 744
Release :
ISBN-10 : 0521833787
ISBN-13 : 9780521833783
Rating : 4/5 (87 Downloads)

Synopsis Convex Optimization by : Stephen P. Boyd

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

An Introduction to Optimization

An Introduction to Optimization
Author :
Publisher : John Wiley & Sons
Total Pages : 646
Release :
ISBN-10 : 9781118515150
ISBN-13 : 1118515153
Rating : 4/5 (50 Downloads)

Synopsis An Introduction to Optimization by : Edwin K. P. Chong

Praise for the Third Edition ". . . guides and leads the reader through the learning path . . . [e]xamples are stated very clearly and the results are presented with attention to detail." —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.

Structural Optimization

Structural Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 304
Release :
ISBN-10 : 9780387958651
ISBN-13 : 0387958657
Rating : 4/5 (51 Downloads)

Synopsis Structural Optimization by : William R. Spillers

Structural Optimization is intended to supplement the engineer’s box of analysis and design tools making optimization as commonplace as the finite element method in the engineering workplace. It begins with an introduction to structural optimization and the methods of nonlinear programming such as Lagrange multipliers, Kuhn-Tucker conditions, and calculus of variations. It then discusses solution methods for optimization problems such as the classic method of linear programming which leads to the method of sequential linear programming. It then proposes using sequential linear programming together with the incremental equations of structures as a general method for structural optimization. It is furthermore intended to give the engineer an overview of the field of structural optimization.