A Course on Holomorphic Discs

A Course on Holomorphic Discs
Author :
Publisher : Springer Nature
Total Pages : 203
Release :
ISBN-10 : 9783031360640
ISBN-13 : 3031360648
Rating : 4/5 (40 Downloads)

Synopsis A Course on Holomorphic Discs by : Hansjörg Geiges

This textbook, based on a one-semester course taught several times by the authors, provides a self-contained, comprehensive yet concise introduction to the theory of pseudoholomorphic curves. Gromov’s nonsqueezing theorem in symplectic topology is taken as a motivating example, and a complete proof using pseudoholomorphic discs is presented. A sketch of the proof is discussed in the first chapter, with succeeding chapters guiding the reader through the details of the mathematical methods required to establish compactness, regularity, and transversality results. Concrete examples illustrate many of the more complicated concepts, and well over 100 exercises are distributed throughout the text. This approach helps the reader to gain a thorough understanding of the powerful analytical tools needed for the study of more advanced topics in symplectic topology. /divThis text can be used as the basis for a graduate course, and it is also immensely suitable for independent study. Prerequisites include complex analysis, differential topology, and basic linear functional analysis; no prior knowledge of symplectic geometry is assumed. This book is also part of the Virtual Series on Symplectic Geometry.

A Course on Holomorphic Discs

A Course on Holomorphic Discs
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 3031360656
ISBN-13 : 9783031360657
Rating : 4/5 (56 Downloads)

Synopsis A Course on Holomorphic Discs by : Hansjörg Geiges

This textbook, based on a one-semester course taught several times by the authors, provides a self-contained, comprehensive yet concise introduction to the theory of pseudoholomorphic curves. Gromov's nonsqueezing theorem in symplectic topology is taken as a motivating example, and a complete proof using pseudoholomorphic discs is presented. A sketch of the proof is discussed in the first chapter, with succeeding chapters guiding the reader through the details of the mathematical methods required to establish compactness, regularity, and transversality results. Concrete examples illustrate many of the more complicated concepts, and well over 100 exercises are distributed throughout the text. This approach helps the reader to gain a thorough understanding of the powerful analytical tools needed for the study of more advanced topics in symplectic topology. This text can be used as the basis for a graduate course, and it is also immensely suitable for independent study. Prerequisites include complex analysis, differential topology, and basic linear functional analysis; no prior knowledge of symplectic geometry is assumed. This book is also part of the Virtual Series on Symplectic Geometry.

Holomorphic Curves in Low Dimensions

Holomorphic Curves in Low Dimensions
Author :
Publisher : Springer
Total Pages : 303
Release :
ISBN-10 : 9783319913711
ISBN-13 : 3319913719
Rating : 4/5 (11 Downloads)

Synopsis Holomorphic Curves in Low Dimensions by : Chris Wendl

This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019

Lagrangian Intersection Floer Theory

Lagrangian Intersection Floer Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 426
Release :
ISBN-10 : 9780821852507
ISBN-13 : 0821852507
Rating : 4/5 (07 Downloads)

Synopsis Lagrangian Intersection Floer Theory by : Kenji Fukaya

This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.

J-holomorphic Curves and Symplectic Topology

J-holomorphic Curves and Symplectic Topology
Author :
Publisher : American Mathematical Soc.
Total Pages : 744
Release :
ISBN-10 : 9780821887462
ISBN-13 : 0821887467
Rating : 4/5 (62 Downloads)

Synopsis J-holomorphic Curves and Symplectic Topology by : Dusa McDuff

The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.

$J$-Holomorphic Curves and Quantum Cohomology

$J$-Holomorphic Curves and Quantum Cohomology
Author :
Publisher : American Mathematical Soc.
Total Pages : 220
Release :
ISBN-10 : 9780821803325
ISBN-13 : 0821803328
Rating : 4/5 (25 Downloads)

Synopsis $J$-Holomorphic Curves and Quantum Cohomology by : Dusa McDuff

J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.

Quantum Fields and Strings: A Course for Mathematicians

Quantum Fields and Strings: A Course for Mathematicians
Author :
Publisher : American Mathematical Society
Total Pages : 747
Release :
ISBN-10 : 9780821820124
ISBN-13 : 0821820125
Rating : 4/5 (24 Downloads)

Synopsis Quantum Fields and Strings: A Course for Mathematicians by : Pierre Deligne

A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.

Different Faces of Geometry

Different Faces of Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 424
Release :
ISBN-10 : 9780306486586
ISBN-13 : 030648658X
Rating : 4/5 (86 Downloads)

Synopsis Different Faces of Geometry by : Simon Donaldson

Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsvath and Szabo). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun.Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kahler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the 11/8 conjecture. LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even well-known 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the geometry is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra.The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems. - From the Preface by the Editors

Complex Geometry

Complex Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 336
Release :
ISBN-10 : 3540212906
ISBN-13 : 9783540212904
Rating : 4/5 (06 Downloads)

Synopsis Complex Geometry by : Daniel Huybrechts

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

Topics in Complex Analysis

Topics in Complex Analysis
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 356
Release :
ISBN-10 : 9783110796889
ISBN-13 : 3110796880
Rating : 4/5 (89 Downloads)

Synopsis Topics in Complex Analysis by : Dan Romik

This graduate-level mathematics textbook provides an in-depth and readable exposition of selected topics in complex analysis. The material spans both the standard theory at a level suitable for a first-graduate class on the subject and several advanced topics delving deeper into the subject and applying the theory in different directions. The focus is on beautiful applications of complex analysis to geometry and number theory. The text is accompanied by beautiful figures illustrating many of the concepts and proofs. Among the topics covered are asymptotic analysis; conformal mapping and the Riemann mapping theory; the Euler gamma function, the Riemann zeta function, and a proof of the prime number theorem; elliptic functions, and modular forms. The final chapter gives the first detailed account in textbook format of the recent solution to the sphere packing problem in dimension 8, published by Maryna Viazovska in 2016 — a groundbreaking proof for which Viazovska was awarded the Fields Medal in 2022. The book is suitable for self-study by graduate students or advanced undergraduates with an interest in complex analysis and its applications, or for use as a textbook for graduate mathematics classes, with enough material for 2-3 semester-long classes. Researchers in complex analysis, analytic number theory, modular forms, and the theory of sphere packing, will also find much to enjoy in the text, including new material not found in standard textbooks.