A Course in Topological Combinatorics

A Course in Topological Combinatorics
Author :
Publisher : Springer Science & Business Media
Total Pages : 246
Release :
ISBN-10 : 9781441979094
ISBN-13 : 1441979093
Rating : 4/5 (94 Downloads)

Synopsis A Course in Topological Combinatorics by : Mark de Longueville

This undergraduate textbook in topological combinatorics covers such topics as fair division, graph coloring problems, evasiveness of graph properties, and embedding problems from discrete geometry. Includes many figures and exercises.

Combinatorial Algebraic Topology

Combinatorial Algebraic Topology
Author :
Publisher : Springer Science & Business Media
Total Pages : 416
Release :
ISBN-10 : 3540730516
ISBN-13 : 9783540730514
Rating : 4/5 (16 Downloads)

Synopsis Combinatorial Algebraic Topology by : Dimitry Kozlov

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Using the Borsuk-Ulam Theorem

Using the Borsuk-Ulam Theorem
Author :
Publisher : Springer Science & Business Media
Total Pages : 221
Release :
ISBN-10 : 9783540766490
ISBN-13 : 3540766499
Rating : 4/5 (90 Downloads)

Synopsis Using the Borsuk-Ulam Theorem by : Jiri Matousek

To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.

Intuitive Combinatorial Topology

Intuitive Combinatorial Topology
Author :
Publisher : Springer Science & Business Media
Total Pages : 160
Release :
ISBN-10 : 0387951148
ISBN-13 : 9780387951140
Rating : 4/5 (48 Downloads)

Synopsis Intuitive Combinatorial Topology by : V.G. Boltyanskii

Topology is a relatively young and very important branch of mathematics, which studies the properties of objects that are preserved through deformations, twistings, and stretchings. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. This book is well suited for readers who are interested in finding out what topology is all about.

Distributed Computing Through Combinatorial Topology

Distributed Computing Through Combinatorial Topology
Author :
Publisher : Newnes
Total Pages : 335
Release :
ISBN-10 : 9780124047280
ISBN-13 : 0124047289
Rating : 4/5 (80 Downloads)

Synopsis Distributed Computing Through Combinatorial Topology by : Maurice Herlihy

Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. - Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews - Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding - Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols - Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology
Author :
Publisher : University of Chicago Press
Total Pages : 262
Release :
ISBN-10 : 0226511839
ISBN-13 : 9780226511832
Rating : 4/5 (39 Downloads)

Synopsis A Concise Course in Algebraic Topology by : J. P. May

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Classical Topology and Combinatorial Group Theory

Classical Topology and Combinatorial Group Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 344
Release :
ISBN-10 : 9781461243724
ISBN-13 : 1461243726
Rating : 4/5 (24 Downloads)

Synopsis Classical Topology and Combinatorial Group Theory by : John Stillwell

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.

Geometric Combinatorics

Geometric Combinatorics
Author :
Publisher : American Mathematical Soc.
Total Pages : 705
Release :
ISBN-10 : 9780821837368
ISBN-13 : 0821837362
Rating : 4/5 (68 Downloads)

Synopsis Geometric Combinatorics by : Ezra Miller

Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.

A First Course in Enumerative Combinatorics

A First Course in Enumerative Combinatorics
Author :
Publisher : American Mathematical Soc.
Total Pages : 272
Release :
ISBN-10 : 9781470459956
ISBN-13 : 1470459957
Rating : 4/5 (56 Downloads)

Synopsis A First Course in Enumerative Combinatorics by : Carl G. Wagner

A First Course in Enumerative Combinatorics provides an introduction to the fundamentals of enumeration for advanced undergraduates and beginning graduate students in the mathematical sciences. The book offers a careful and comprehensive account of the standard tools of enumeration—recursion, generating functions, sieve and inversion formulas, enumeration under group actions—and their application to counting problems for the fundamental structures of discrete mathematics, including sets and multisets, words and permutations, partitions of sets and integers, and graphs and trees. The author's exposition has been strongly influenced by the work of Rota and Stanley, highlighting bijective proofs, partially ordered sets, and an emphasis on organizing the subject under various unifying themes, including the theory of incidence algebras. In addition, there are distinctive chapters on the combinatorics of finite vector spaces, a detailed account of formal power series, and combinatorial number theory. The reader is assumed to have a knowledge of basic linear algebra and some familiarity with power series. There are over 200 well-designed exercises ranging in difficulty from straightforward to challenging. There are also sixteen large-scale honors projects on special topics appearing throughout the text. The author is a distinguished combinatorialist and award-winning teacher, and he is currently Professor Emeritus of Mathematics and Adjunct Professor of Philosophy at the University of Tennessee. He has published widely in number theory, combinatorics, probability, decision theory, and formal epistemology. His Erdős number is 2.