A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography
Author :
Publisher : Springer Science & Business Media
Total Pages : 245
Release :
ISBN-10 : 9781441985927
ISBN-13 : 1441985921
Rating : 4/5 (27 Downloads)

Synopsis A Course in Number Theory and Cryptography by : Neal Koblitz

This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.

A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography
Author :
Publisher : Springer Science & Business Media
Total Pages : 216
Release :
ISBN-10 : 9781468403107
ISBN-13 : 1468403109
Rating : 4/5 (07 Downloads)

Synopsis A Course in Number Theory and Cryptography by : Neal Koblitz

The purpose of this book is to introduce the reader to arithmetic topics, both ancient and modern, that have been at the center of interest in applications of number theory, particularly in cryptography. Because number theory and cryptography are fast-moving fields, this new edition contains substantial revisions and updated references.

A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography
Author :
Publisher : Springer Science & Business Media
Total Pages : 258
Release :
ISBN-10 : 0387942939
ISBN-13 : 9780387942933
Rating : 4/5 (39 Downloads)

Synopsis A Course in Number Theory and Cryptography by : Neal Koblitz

This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.

An Introduction to Number Theory with Cryptography

An Introduction to Number Theory with Cryptography
Author :
Publisher : CRC Press
Total Pages : 409
Release :
ISBN-10 : 9781351664103
ISBN-13 : 1351664107
Rating : 4/5 (03 Downloads)

Synopsis An Introduction to Number Theory with Cryptography by : James Kraft

Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.

An Introduction to Mathematical Cryptography

An Introduction to Mathematical Cryptography
Author :
Publisher : Springer
Total Pages : 549
Release :
ISBN-10 : 9781493917112
ISBN-13 : 1493917110
Rating : 4/5 (12 Downloads)

Synopsis An Introduction to Mathematical Cryptography by : Jeffrey Hoffstein

This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.

A Course in Computational Algebraic Number Theory

A Course in Computational Algebraic Number Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 556
Release :
ISBN-10 : 9783662029459
ISBN-13 : 3662029456
Rating : 4/5 (59 Downloads)

Synopsis A Course in Computational Algebraic Number Theory by : Henri Cohen

A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.

An Introduction to Number Theory with Cryptography

An Introduction to Number Theory with Cryptography
Author :
Publisher : CRC Press
Total Pages : 568
Release :
ISBN-10 : 9781482214420
ISBN-13 : 1482214423
Rating : 4/5 (20 Downloads)

Synopsis An Introduction to Number Theory with Cryptography by : James S. Kraft

Number theory has a rich history. For many years it was one of the purest areas of pure mathematics, studied because of the intellectual fascination with properties of integers. More recently, it has been an area that also has important applications to subjects such as cryptography. An Introduction to Number Theory with Cryptography presents number

A Course in Cryptography

A Course in Cryptography
Author :
Publisher : American Mathematical Soc.
Total Pages : 323
Release :
ISBN-10 : 9781470450557
ISBN-13 : 1470450550
Rating : 4/5 (57 Downloads)

Synopsis A Course in Cryptography by : Heiko Knospe

This book provides a compact course in modern cryptography. The mathematical foundations in algebra, number theory and probability are presented with a focus on their cryptographic applications. The text provides rigorous definitions and follows the provable security approach. The most relevant cryptographic schemes are covered, including block ciphers, stream ciphers, hash functions, message authentication codes, public-key encryption, key establishment, digital signatures and elliptic curves. The current developments in post-quantum cryptography are also explored, with separate chapters on quantum computing, lattice-based and code-based cryptosystems. Many examples, figures and exercises, as well as SageMath (Python) computer code, help the reader to understand the concepts and applications of modern cryptography. A special focus is on algebraic structures, which are used in many cryptographic constructions and also in post-quantum systems. The essential mathematics and the modern approach to cryptography and security prepare the reader for more advanced studies. The text requires only a first-year course in mathematics (calculus and linear algebra) and is also accessible to computer scientists and engineers. This book is suitable as a textbook for undergraduate and graduate courses in cryptography as well as for self-study.

Number Theory and Cryptography

Number Theory and Cryptography
Author :
Publisher : Springer
Total Pages : 292
Release :
ISBN-10 : 9783642420016
ISBN-13 : 364242001X
Rating : 4/5 (16 Downloads)

Synopsis Number Theory and Cryptography by : Marc Fischlin

Johannes Buchmann is internationally recognized as one of the leading figures in areas of computational number theory, cryptography and information security. He has published numerous scientific papers and books spanning a very wide spectrum of interests; besides R&D he also fulfilled lots of administrative tasks for instance building up and directing his research group CDC at Darmstadt, but he also served as the Dean of the Department of Computer Science at TU Darmstadt and then went on to become Vice President of the university for six years (2001-2007). This festschrift, published in honor of Johannes Buchmann on the occasion of his 60th birthday, contains contributions by some of his colleagues, former students and friends. The papers give an overview of Johannes Buchmann's research interests, ranging from computational number theory and the hardness of cryptographic assumptions to more application-oriented topics such as privacy and hardware security. With this book we celebrate Johannes Buchmann's vision and achievements.

A Course in Number Theory

A Course in Number Theory
Author :
Publisher : Oxford University Press
Total Pages : 420
Release :
ISBN-10 : 0198523769
ISBN-13 : 9780198523765
Rating : 4/5 (69 Downloads)

Synopsis A Course in Number Theory by : H. E. Rose

This textbook covers the main topics in number theory as taught in universities throughout the world. Number theory deals mainly with properties of integers and rational numbers; it is not an organized theory in the usual sense but a vast collection of individual topics and results, with some coherent sub-theories and a long list of unsolved problems. This book excludes topics relying heavily on complex analysis and advanced algebraic number theory. The increased use of computers in number theory is reflected in many sections (with much greater emphasis in this edition). Some results of a more advanced nature are also given, including the Gelfond-Schneider theorem, the prime number theorem, and the Mordell-Weil theorem. The latest work on Fermat's last theorem is also briefly discussed. Each chapter ends with a collection of problems; hints or sketch solutions are given at the end of the book, together with various useful tables.