A Course In Homological Algebra
Download A Course In Homological Algebra full books in PDF, epub, and Kindle. Read online free A Course In Homological Algebra ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: P.J. Hilton |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 348 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9781468499360 |
ISBN-13 |
: 146849936X |
Rating |
: 4/5 (60 Downloads) |
Synopsis A Course in Homological Algebra by : P.J. Hilton
In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.
Author |
: Charles A. Weibel |
Publisher |
: Cambridge University Press |
Total Pages |
: 470 |
Release |
: 1995-10-27 |
ISBN-10 |
: 9781139643078 |
ISBN-13 |
: 113964307X |
Rating |
: 4/5 (78 Downloads) |
Synopsis An Introduction to Homological Algebra by : Charles A. Weibel
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.
Author |
: M. Scott Osborne |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 398 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461212782 |
ISBN-13 |
: 1461212782 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Basic Homological Algebra by : M. Scott Osborne
From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter
Author |
: Northcott |
Publisher |
: Cambridge University Press |
Total Pages |
: 294 |
Release |
: 1960 |
ISBN-10 |
: 0521058414 |
ISBN-13 |
: 9780521058414 |
Rating |
: 4/5 (14 Downloads) |
Synopsis An Introduction to Homological Algebra by : Northcott
Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course.
Author |
: James W. Vick |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 258 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461208815 |
ISBN-13 |
: 1461208815 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Homology Theory by : James W. Vick
This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
Author |
: Michael F. Atiyah |
Publisher |
: CRC Press |
Total Pages |
: 140 |
Release |
: 2018-03-09 |
ISBN-10 |
: 9780429973260 |
ISBN-13 |
: 0429973268 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Introduction To Commutative Algebra by : Michael F. Atiyah
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Author |
: Edgar E. Enochs |
Publisher |
: Walter de Gruyter |
Total Pages |
: 377 |
Release |
: 2011-10-27 |
ISBN-10 |
: 9783110215212 |
ISBN-13 |
: 3110215217 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Relative Homological Algebra by : Edgar E. Enochs
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. In this new edition the authors have added well-known additional material in the first three chapters, and added new material that was not available at the time the original edition was published. In particular, the major changes are the following: Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the beginner, and this has necessitated a new Section 1.3. Chapter 3: The classic work of D. G. Northcott on injective envelopes and inverse polynomials is finally included. This provides additional examples for the reader. Chapter 11: Section 11.9 on Kaplansky classes makes volume one more up to date. The material in this section was not available at the time the first edition was published. The authors also have clarified some text throughout the book and updated the bibliography by adding new references. The book is also suitable for an introductory course in commutative and ordinary homological algebra.
Author |
: Kenneth S. Brown |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 318 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781468493276 |
ISBN-13 |
: 1468493272 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Cohomology of Groups by : Kenneth S. Brown
Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.
Author |
: L.R. Vermani |
Publisher |
: CRC Press |
Total Pages |
: 326 |
Release |
: 2003-05-28 |
ISBN-10 |
: 9780203484081 |
ISBN-13 |
: 0203484088 |
Rating |
: 4/5 (81 Downloads) |
Synopsis An Elementary Approach to Homological Algebra by : L.R. Vermani
Often perceived as dry and abstract, homological algebra nonetheless has important applications in a number of important areas, including ring theory, group theory, representation theory, and algebraic topology and geometry. Although the area of study developed almost 50 years ago, a textbook at this level has never before been available. An Elementary Approach to Homological Algebra fills that void. Designed to meet the needs of beginning graduate students, the author presents the material in a clear, easy-to-understand manner with many examples and exercises. The book's level of detail, while not exhaustive, also makes it useful for self-study and as a reference for researchers.
Author |
: Douglas Geoffrey Northcott |
Publisher |
: CUP Archive |
Total Pages |
: 224 |
Release |
: 1973-10-11 |
ISBN-10 |
: 0521201969 |
ISBN-13 |
: 9780521201964 |
Rating |
: 4/5 (69 Downloads) |
Synopsis A First Course of Homological Algebra by : Douglas Geoffrey Northcott
Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.