A Closer Look at the Diffusion Equation

A Closer Look at the Diffusion Equation
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 153618330X
ISBN-13 : 9781536183306
Rating : 4/5 (0X Downloads)

Synopsis A Closer Look at the Diffusion Equation by : Jordan Hristov

"Diffusion is a principle transport mechanism emerging widely at different scale, from nano to micro and macro levels. This is a contributed book of seventh chapters encompassing local and no-local diffusion phenomena modelled with integer-order (local) and non-local operators. This book collates research results developed by scientists from different countries but with common research interest in modelling of diffusion problems. The results reported encompass diffusion problems related to efficient numerical modelling, hypersonic flows, approximate analytical solutions of solvent diffusion in polymers and wetting of soils. Some chapters are devoted to fractional diffusion problem with operators with singular and non-singular memory kernels. The book content cannot present the entire rich area of problems related to modelling of diffusion phenomena but allow seeing some new trends and approaches in the modelling technologies. In this context, the fractional models with singular and non-singular kernels the numerical methods and the development of the integration techniques related to the integral-balance approach form fresh fluxes of ideas to this classical engineering area of research. The book is oriented to researchers; master and PhD students involved in diffusion problems with a variety of application and could serves as a rich reference source and a collection of texts provoking new ideas"--

A Closer Look of Nonlinear Reaction-Diffusion Equations

A Closer Look of Nonlinear Reaction-Diffusion Equations
Author :
Publisher : Nova Science Publishers
Total Pages : 207
Release :
ISBN-10 : 1536183563
ISBN-13 : 9781536183566
Rating : 4/5 (63 Downloads)

Synopsis A Closer Look of Nonlinear Reaction-Diffusion Equations by : Lakshmanan Rajendran

By using mathematical models to describe the physical, biological or chemical phenomena, one of the most common results is either a differential equation or a system of differential equations, together with the correct boundary and initial conditions. The determination and interpretation of their solution are at the base of applied mathematics. Hence the analytical and numerical study of the differential equation is very much essential for all theoretical and experimental researchers, and this book helps to develop skills in this area.Recently non-linear differential equations were widely used to model many of the interesting and relevant phenomena found in many fields of science and technology on a mathematical basis. This problem is to inspire them in various fields such as economics, medical biology, plasma physics, particle physics, differential geometry, engineering, signal processing, electrochemistry and materials science.This book contains seven chapters and practical applications to the problems of the real world. The first chapter is specifically for those with limited mathematical background. Chapter one presents the introduction of non-linear reaction-diffusion systems, various boundary conditions and examples. Real-life application of non-linear reaction-diffusion in different fields with some important non-linear equations is also discussed. In Chapter 2, mathematical preliminaries and various advanced methods of solving non-linear differential equations such as Homotopy perturbation method, variational iteration method, exponential function method etc. are described with examples.Steady and non-steady state reaction-diffusion equations in the plane sheet (chapter 3), cylinder (chapter 4) and spherical (chapter 5) are analyzed. The analytical results published by various researchers in referred journals during 2007-2020 have been addressed in these chapters 4 to 6, and this leads to conclusions and recommendations on what approaches to use on non-linear reaction-diffusion equations.Convection-diffusion problems arise very often in applied sciences and engineering. Non-linear convection-diffusion equations and corresponding analytical solutions in various fields of chemical sciences are discussed in chapter6. Numerical methods are used to provide approximate results for the non-linear problems, and their importance is felt when it is impossible or difficult to solve a given problem analytically. Chapter 7 identifies some of the numerical methods for finding solutions to non-linear differential equations.

The Mathematics of Diffusion

The Mathematics of Diffusion
Author :
Publisher : Oxford University Press
Total Pages : 428
Release :
ISBN-10 : 0198534116
ISBN-13 : 9780198534112
Rating : 4/5 (16 Downloads)

Synopsis The Mathematics of Diffusion by : John Crank

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.

Pattern Recognition

Pattern Recognition
Author :
Publisher : Springer
Total Pages : 526
Release :
ISBN-10 : 9783540319429
ISBN-13 : 3540319425
Rating : 4/5 (29 Downloads)

Synopsis Pattern Recognition by : Walter Kropatsch

It is both an honor and a pleasure to hold the 27th Annual Meeting of the German Association for Pattern Recognition, DAGM 2005, at the Vienna U- versity of Technology, Austria, organized by the Pattern Recognition and Image Processing (PRIP) Group. We received 122 contributions of which we were able to accept 29 as oral presentations and 31 as posters. Each paper received three reviews, upon which decisions were made based on correctness, presentation, technical depth, scienti?c signi?cance and originality. The selection as oral or poster presentation does not signify a quality grading but re?ects attractiveness to the audience which is also re?ected in the order of appearance of papers in these proceedings. The papers are printed in the same order as presented at the symposium and posters are integrated in the corresponding thematic session. In putting these proceedings together, many people played signi?cant roles which we would like to acknowledge. First of all our thanks go to the authors who contributed their work to the symposium. Second, we are grateful for the dedicated work of the 38 members of the Program Committee for their e?ort in evaluating the submitted papers and inprovidingthe necessarydecisionsupport information and the valuable feedback for the authors. Furthermore, the P- gram Committee awarded prizes for the best papers, and we want to sincerely thank the donors. We were honored to have the following three invited speakers at the conf- ence: – Jan P.

Numerical Methods and Applications

Numerical Methods and Applications
Author :
Publisher : Springer Nature
Total Pages : 365
Release :
ISBN-10 : 9783031324123
ISBN-13 : 3031324129
Rating : 4/5 (23 Downloads)

Synopsis Numerical Methods and Applications by : Ivan Georgiev

This book constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Numerical Methods and Applications, NMA 2022, held in Borovets, Bulgaria, in August 2022.The 30 revised regular papers presented were carefully reviewed and selected from 38 submissions for inclusion in this book. The papers are organized in the following topical sections: numerical search and optimization; problem-driven numerical method: motivation and application, numerical methods for fractional diffusion problems; orthogonal polynomials and numerical quadratures; and Monte Carlo and Quasi-Monte Carlo methods.

Introduction to Nuclear Reactor Physics

Introduction to Nuclear Reactor Physics
Author :
Publisher : CRC Press
Total Pages : 1544
Release :
ISBN-10 : 9781498751506
ISBN-13 : 1498751504
Rating : 4/5 (06 Downloads)

Synopsis Introduction to Nuclear Reactor Physics by : Robert E. Masterson

INTRODUCTION TO NUCLEAR REACTOR PHYSICS is the most comprehensive, modern and readable textbook for this course/module. It explains reactors, fuel cycles, radioisotopes, radioactive materials, design, and operation. Chain reaction and fission reactor concepts are presented, plus advanced coverage including neutron diffusion theory. The diffusion equation, Fisk’s Law, and steady state/time-dependent reactor behavior. Numerical and analytical solutions are also covered. The text has full color illustrations throughout, and a wide range of student learning features.

Finite Difference Computing with PDEs

Finite Difference Computing with PDEs
Author :
Publisher : Springer
Total Pages : 522
Release :
ISBN-10 : 9783319554563
ISBN-13 : 3319554565
Rating : 4/5 (63 Downloads)

Synopsis Finite Difference Computing with PDEs by : Hans Petter Langtangen

This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Elements of Scientific Computing

Elements of Scientific Computing
Author :
Publisher : Springer Science & Business Media
Total Pages : 471
Release :
ISBN-10 : 9783642112997
ISBN-13 : 3642112994
Rating : 4/5 (97 Downloads)

Synopsis Elements of Scientific Computing by : Aslak Tveito

Science used to be experiments and theory, now it is experiments, theory and computations. The computational approach to understanding nature and technology is currently flowering in many fields such as physics, geophysics, astrophysics, chemistry, biology, and most engineering disciplines. This book is a gentle introduction to such computational methods where the techniques are explained through examples. It is our goal to teach principles and ideas that carry over from field to field. You will learn basic methods and how to implement them. In order to gain the most from this text, you will need prior knowledge of calculus, basic linear algebra and elementary programming.

Fractional Dynamics in Natural Phenomena and Advanced Technologies

Fractional Dynamics in Natural Phenomena and Advanced Technologies
Author :
Publisher : Cambridge Scholars Publishing
Total Pages : 290
Release :
ISBN-10 : 9781527552777
ISBN-13 : 1527552772
Rating : 4/5 (77 Downloads)

Synopsis Fractional Dynamics in Natural Phenomena and Advanced Technologies by : Dumitru Baleanu

This book addresses different applied problems in order to demonstrate the feasibility of fractional calculus’ use, irrespective of the type of memory kernels used, to model varieties of natural phenomena and new processes emerging in advanced technologies. In this context, the book’s focus is on modelling, adequate results, and interpretations, rather than theorems and proofs. The book includes a total of 12 chapters, representing various aspects of applied fractional modelling and covering important issues in modern technologies to provide a better understanding of applications of fractional calculus in applied modelling. The book will be a versatile source of information for undergraduate and graduate students, and for scientists involved in modelling of nonlinear and hereditary phenomena.

Calculus for the Natural Sciences

Calculus for the Natural Sciences
Author :
Publisher : SIAM
Total Pages : 457
Release :
ISBN-10 : 9781611977691
ISBN-13 : 161197769X
Rating : 4/5 (91 Downloads)

Synopsis Calculus for the Natural Sciences by : Michel Helfgott

In this textbook on calculus of one variable, applications to the natural sciences play a central role. Examples from biology, chemistry, and physics are discussed in detail without compromising the mathematical aspects essential to learning differential and integral calculus. Calculus for the Natural Sciences distinguishes itself from other textbooks on the topic by balancing theory, mathematical techniques, and applications to motivate students and bridge the gap between mathematics and the natural sciences and engineering; employing real data to convey the main ideas underlying the scientific method; and using SageMath and R to perform calculations and write short programs, thus giving the teacher more time to explain important concepts. This textbook is intended for first-year students in mathematics, engineering, and the natural sciences and is appropriate for a two-semester course on calculus I and II (freshman calculus of one variable). It can also be used for self-study by engineers and natural scientists.