A Brief Introduction to Spectral Graph Theory

A Brief Introduction to Spectral Graph Theory
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 3037191880
ISBN-13 : 9783037191880
Rating : 4/5 (80 Downloads)

Synopsis A Brief Introduction to Spectral Graph Theory by : Bogdan Nica

"Spectral graph theory starts by associating matrices to graphs - notably, the adjacency matrix and the Laplacian matrix. The general theme is then, firstly, to compute or estimate the eigenvalues of such matrices, and secondly, to relate the eigenvalues to structural properties of graphs. As it turns out, the spectral perspective is a powerful tool. Some of its loveliest applications concern facts that are, in principle, purely graph theoretic or combinatorial. This text is an introduction to spectral graph theory, but it could also be seen as an invitation to algebraic graph theory. The first half is devoted to graphs, finite fields, and how they come together. This part provides an appealing motivation and context of the second, spectral, half. The text is enriched by many exercises and their solutions. The target audience are students from the upper undergraduate level onwards. We assume only a familiarity with linear algebra and basic group theory. Graph theory, finite fields, and character theory for abelian groups receive a concise overview and render the text essentially self-contained"--Back cover.

A Brief Introduction to Spectral Graph Theory

A Brief Introduction to Spectral Graph Theory
Author :
Publisher :
Total Pages : 156
Release :
ISBN-10 : 3037196882
ISBN-13 : 9783037196885
Rating : 4/5 (82 Downloads)

Synopsis A Brief Introduction to Spectral Graph Theory by : Bogdan Nica

Spectral graph theory starts by associating matrices to graphs – notably, the adjacency matrix and the Laplacian matrix. The general theme is then, firstly, to compute or estimate the eigenvalues of such matrices, and secondly, to relate the eigenvalues to structural properties of graphs. As it turns out, the spectral perspective is a powerful tool. Some of its loveliest applications concern facts that are, in principle, purely graph theoretic or combinatorial. This text is an introduction to spectral graph theory, but it could also be seen as an invitation to algebraic graph theory. The first half is devoted to graphs, finite fields, and how they come together. This part provides an appealing motivation and context of the second, spectral, half. The text is enriched by many exercises and their solutions. The target audience are students from the upper undergraduate level onwards. We assume only a familiarity with linear algebra and basic group theory. Graph theory, finite fields, and character theory for abelian groups receive a concise overview and render the text essentially self-contained.

An Introduction to the Theory of Graph Spectra

An Introduction to the Theory of Graph Spectra
Author :
Publisher : Cambridge University Press
Total Pages : 0
Release :
ISBN-10 : 0521134080
ISBN-13 : 9780521134088
Rating : 4/5 (80 Downloads)

Synopsis An Introduction to the Theory of Graph Spectra by : Dragoš Cvetković

This introductory text explores the theory of graph spectra: a topic with applications across a wide range of subjects, including computer science, quantum chemistry and electrical engineering. The spectra examined here are those of the adjacency matrix, the Seidel matrix, the Laplacian, the normalized Laplacian and the signless Laplacian of a finite simple graph. The underlying theme of the book is the relation between the eigenvalues and structure of a graph. Designed as an introductory text for graduate students, or anyone using the theory of graph spectra, this self-contained treatment assumes only a little knowledge of graph theory and linear algebra. The authors include many new developments in the field which arise as a result of rapidly expanding interest in the area. Exercises, spectral data and proofs of required results are also provided. The end-of-chapter notes serve as a practical guide to the extensive bibliography of over 500 items.

Spectral Graph Theory

Spectral Graph Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 228
Release :
ISBN-10 : 9780821803158
ISBN-13 : 0821803158
Rating : 4/5 (58 Downloads)

Synopsis Spectral Graph Theory by : Fan R. K. Chung

This text discusses spectral graph theory.

Graph Spectra for Complex Networks

Graph Spectra for Complex Networks
Author :
Publisher : Cambridge University Press
Total Pages : 363
Release :
ISBN-10 : 9781139492270
ISBN-13 : 1139492276
Rating : 4/5 (70 Downloads)

Synopsis Graph Spectra for Complex Networks by : Piet van Mieghem

Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.

Spectra of Graphs

Spectra of Graphs
Author :
Publisher :
Total Pages : 374
Release :
ISBN-10 : UOM:39015040419585
ISBN-13 :
Rating : 4/5 (85 Downloads)

Synopsis Spectra of Graphs by : Dragoš M. Cvetković

The theory of graph spectra can, in a way, be considered as an attempt to utilize linear algebra including, in particular, the well-developed theory of matrices for the purposes of graph theory and its applications. to the theory of matrices; on the contrary, it has its own characteristic features and specific ways of reasoning fully justifying it to be treated as a theory in its own right.

Spectra of Graphs

Spectra of Graphs
Author :
Publisher : Springer Science & Business Media
Total Pages : 254
Release :
ISBN-10 : 9781461419396
ISBN-13 : 1461419395
Rating : 4/5 (96 Downloads)

Synopsis Spectra of Graphs by : Andries E. Brouwer

This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.

Recent Results in the Theory of Graph Spectra

Recent Results in the Theory of Graph Spectra
Author :
Publisher : Elsevier
Total Pages : 319
Release :
ISBN-10 : 9780080867762
ISBN-13 : 0080867766
Rating : 4/5 (62 Downloads)

Synopsis Recent Results in the Theory of Graph Spectra by : D.M. Cvetkovic

The purpose of this volume is to review the results in spectral graph theory which have appeared since 1978.The problem of characterizing graphs with least eigenvalue -2 was one of the original problems of spectral graph theory. The techniques used in the investigation of this problem have continued to be useful in other contexts including forbidden subgraph techniques as well as geometric methods involving root systems. In the meantime, the particular problem giving rise to these methods has been solved almost completely. This is indicated in Chapter 1.The study of various combinatorial objects (including distance regular and distance transitive graphs, association schemes, and block designs) have made use of eigenvalue techniques, usually as a method to show the nonexistence of objects with certain parameters. The basic method is to construct a graph which contains the structure of the combinatorial object and then to use the properties of the eigenvalues of the graph. Methods of this type are given in Chapter 2.Several topics have been included in Chapter 3, including the relationships between the spectrum and automorphism group of a graph, the graph isomorphism and the graph reconstruction problem, spectra of random graphs, and the Shannon capacity problem. Some graph polynomials related to the characteristic polynomial are described in Chapter 4. These include the matching, distance, and permanental polynomials. Applications of the theory of graph spectra to Chemistry and other branches of science are described from a mathematical viewpoint in Chapter 5. The last chapter is devoted to the extension of the theory of graph spectra to infinite graphs.

Graphs and Matrices

Graphs and Matrices
Author :
Publisher : Springer
Total Pages : 197
Release :
ISBN-10 : 9781447165699
ISBN-13 : 1447165691
Rating : 4/5 (99 Downloads)

Synopsis Graphs and Matrices by : Ravindra B. Bapat

This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.

Algebraic Graph Theory

Algebraic Graph Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 453
Release :
ISBN-10 : 9781461301639
ISBN-13 : 1461301637
Rating : 4/5 (39 Downloads)

Synopsis Algebraic Graph Theory by : Chris Godsil

This book presents and illustrates the main tools and ideas of algebraic graph theory, with a primary emphasis on current rather than classical topics. It is designed to offer self-contained treatment of the topic, with strong emphasis on concrete examples.