A Beginners Guide To R
Download A Beginners Guide To R full books in PDF, epub, and Kindle. Read online free A Beginners Guide To R ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Alain Zuur |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 228 |
Release |
: 2009-06-24 |
ISBN-10 |
: 9780387938370 |
ISBN-13 |
: 0387938370 |
Rating |
: 4/5 (70 Downloads) |
Synopsis A Beginner's Guide to R by : Alain Zuur
Based on their extensive experience with teaching R and statistics to applied scientists, the authors provide a beginner's guide to R. To avoid the difficulty of teaching R and statistics at the same time, statistical methods are kept to a minimum. The text covers how to download and install R, import and manage data, elementary plotting, an introduction to functions, advanced plotting, and common beginner mistakes. This book contains everything you need to know to get started with R.
Author |
: Robert Stinerock |
Publisher |
: SAGE |
Total Pages |
: 581 |
Release |
: 2018-01-27 |
ISBN-10 |
: 9781526421470 |
ISBN-13 |
: 152642147X |
Rating |
: 4/5 (70 Downloads) |
Synopsis Statistics with R by : Robert Stinerock
***Choice Outstanding Academic Title Award Winner*** The dynamic, student focused textbook provides step-by-step instruction in the use of R and of statistical language as a general research tool. It is ideal for anyone hoping to: Complete an introductory course in statistics Prepare for more advanced statistical courses Gain the transferable analytical skills needed to interpret research from across the social sciences Learn the technical skills needed to present data visually Acquire a basic competence in the use of R. The book provides readers with the conceptual foundation to use applied statistical methods in everyday research. Each statistical method is developed within the context of practical, real-world examples and is supported by carefully developed pedagogy and jargon-free definitions. Theory is introduced as an accessible and adaptable tool and is always contextualized within the pragmatic context of real research projects and definable research questions. Author Robert Stinerock has also created a wide range of online resources, including: R scripts, complete solutions for all exercises, data files for each chapter, video and screen casts, and interactive multiple-choice quizzes.
Author |
: Jonathan Carroll |
Publisher |
: Simon and Schuster |
Total Pages |
: 514 |
Release |
: 2018-12-10 |
ISBN-10 |
: 9781638356080 |
ISBN-13 |
: 1638356084 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Beyond Spreadsheets with R by : Jonathan Carroll
Summary Beyond Spreadsheets with R shows you how to take raw data and transform it for use in computations, tables, graphs, and more. You'll build on simple programming techniques like loops and conditionals to create your own custom functions. You'll come away with a toolkit of strategies for analyzing and visualizing data of all sorts using R and RStudio. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Spreadsheets are powerful tools for many tasks, but if you need to interpret, interrogate, and present data, they can feel like the wrong tools for the task. That's when R programming is the way to go. The R programming language provides a comfortable environment to properly handle all types of data. And within the open source RStudio development suite, you have at your fingertips easy-to-use ways to simplify complex manipulations and create reproducible processes for analysis and reporting. About the Book With Beyond Spreadsheets with R you'll learn how to go from raw data to meaningful insights using R and RStudio. Each carefully crafted chapter covers a unique way to wrangle data, from understanding individual values to interacting with complex collections of data, including data you scrape from the web. You'll build on simple programming techniques like loops and conditionals to create your own custom functions. You'll come away with a toolkit of strategies for analyzing and visualizing data of all sorts. What's inside How to start programming with R and RStudio Understanding and implementing important R structures and operators Installing and working with R packages Tidying, refining, and plotting your data About the Reader If you're comfortable writing formulas in Excel, you're ready for this book. About the Author Dr Jonathan Carroll is a data science consultant providing R programming services. He holds a PhD in theoretical physics. Table of Contents Introducing data and the R language Getting to know R data types Making new data values Understanding the tools you'll use: Functions Combining data values Selecting data values Doing things with lots of data Doing things conditionally: Control structures Visualizing data: Plotting Doing more with your data with extensions
Author |
: Hadley Wickham |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 521 |
Release |
: 2016-12-12 |
ISBN-10 |
: 9781491910368 |
ISBN-13 |
: 1491910364 |
Rating |
: 4/5 (68 Downloads) |
Synopsis R for Data Science by : Hadley Wickham
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Author |
: Daniel Navarro |
Publisher |
: Lulu.com |
Total Pages |
: 617 |
Release |
: 2013-01-13 |
ISBN-10 |
: 9781326189723 |
ISBN-13 |
: 1326189727 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Learning Statistics with R by : Daniel Navarro
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Author |
: Tilman M. Davies |
Publisher |
: No Starch Press |
Total Pages |
: 833 |
Release |
: 2016-07-16 |
ISBN-10 |
: 9781593276515 |
ISBN-13 |
: 1593276516 |
Rating |
: 4/5 (15 Downloads) |
Synopsis The Book of R by : Tilman M. Davies
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Author |
: Alese Wooditch |
Publisher |
: Springer Nature |
Total Pages |
: 342 |
Release |
: 2021-06-03 |
ISBN-10 |
: 9783030506254 |
ISBN-13 |
: 3030506258 |
Rating |
: 4/5 (54 Downloads) |
Synopsis A Beginner’s Guide to Statistics for Criminology and Criminal Justice Using R by : Alese Wooditch
This book provides hands-on guidance for researchers and practitioners in criminal justice and criminology to perform statistical analyses and data visualization in the free and open-source software R. It offers a step-by-step guide for beginners to become familiar with the RStudio platform and tidyverse set of packages. This volume will help users master the fundamentals of the R programming language, providing tutorials in each chapter that lay out research questions and hypotheses centering around a real criminal justice dataset, such as data from the National Survey on Drug Use and Health, National Crime Victimization Survey, Youth Risk Behavior Surveillance System, The Monitoring the Future Study, and The National Youth Survey. Users will also learn how to manipulate common sources of agency data, such as calls-for-service (CFS) data. The end of each chapter includes exercises that reinforce the R tutorial examples, designed to help master the software as well as to provide practice on statistical concepts, data analysis, and interpretation of results. The text can be used as a stand-alone guide to learning R or it can be used as a companion guide to an introductory statistics textbook, such as Basic Statistics in Criminal Justice (2020).
Author |
: Robert J. Knell |
Publisher |
: Robert Knell |
Total Pages |
: 531 |
Release |
: 2014-05-14 |
ISBN-10 |
: 9780957597112 |
ISBN-13 |
: 0957597118 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Introductory R: A Beginner's Guide to Data Visualisation, Statistical Analysis and Programming in R by : Robert J. Knell
R is now the most widely used statistical software in academic science and it is rapidly expanding into other fields such as finance. R is almost limitlessly flexible and powerful, hence its appeal, but can be very difficult for the novice user. There are no easy pull-down menus, error messages are often cryptic and simple tasks like importing your data or exporting a graph can be difficult and frustrating. Introductory R is written for the novice user who knows a little about statistics but who hasn't yet got to grips with the ways of R. This new edition is completely revised and greatly expanded with new chapters on the basics of descriptive statistics and statistical testing, considerably more information on statistics and six new chapters on programming in R. Topics covered include: A walkthrough of the basics of R's command line interface Data structures including vectors, matrices and data frames R functions and how to use them Expanding your analysis and plotting capacities with add-in R packages A set of simple rules to follow to make sure you import your data properly An introduction to the script editor and advice on workflow A detailed introduction to drawing publication-standard graphs in R How to understand the help files and how to deal with some of the most common errors that you might encounter. Basic descriptive statistics The theory behind statistical testing and how to interpret the output of statistical tests Thorough coverage of the basics of data analysis in R with chapters on using chi-squared tests, t-tests, correlation analysis, regression, ANOVA and general linear models What the assumptions behind the analyses mean and how to test them using diagnostic plots Explanations of the summary tables produced for statistical analyses such as regression and ANOVA Writing your own functions in R Using table operations to manipulate matrices and data frames Using conditional statements and loops in R programmes. Writing longer R programmes. The techniques of statistical analysis in R are illustrated by a series of chapters where experimental and survey data are analysed. There is a strong emphasis on using real data from real scientific research, with all the problems and uncertainty that implies, rather than well-behaved made-up data that give ideal and easy to analyse results.
Author |
: Andrie de Vries |
Publisher |
: John Wiley & Sons |
Total Pages |
: 470 |
Release |
: 2012-06-06 |
ISBN-10 |
: 9781119963134 |
ISBN-13 |
: 1119963133 |
Rating |
: 4/5 (34 Downloads) |
Synopsis R For Dummies by : Andrie de Vries
Master the programming language of choice among statisticians and data analysts worldwide Coming to grips with R can be tough, even for seasoned statisticians and data analysts. Enter R For Dummies, the quick, easy way to master all the R you'll ever need. Requiring no prior programming experience and packed with practical examples, easy, step-by-step exercises, and sample code, this extremely accessible guide is the ideal introduction to R for complete beginners. It also covers many concepts that intermediate-level programmers will find extremely useful. Master your R ABCs ? get up to speed in no time with the basics, from installing and configuring R to writing simple scripts and performing simultaneous calculations on many variables Put data in its place ? get to know your way around lists, data frames, and other R data structures while learning to interact with other programs, such as Microsoft Excel Make data dance to your tune ? learn how to reshape and manipulate data, merge data sets, split and combine data, perform calculations on vectors and arrays, and much more Visualize it ? learn to use R's powerful data visualization features to create beautiful and informative graphical presentations of your data Get statistical ? find out how to do simple statistical analysis, summarize your variables, and conduct classic statistical tests, such as t-tests Expand and customize R ? get the lowdown on how to find, install, and make the most of add-on packages created by the global R community for a wide variety of purposes Open the book and find: Help downloading, installing, and configuring R Tips for getting data in and out of R Ways to use data frames and lists to organize data How to manipulate and process data Advice on fitting regression models and ANOVA Helpful hints for working with graphics How to code in R What R mailing lists and forums can do for you
Author |
: Abhay Kumar Singh |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 264 |
Release |
: 2016-12-14 |
ISBN-10 |
: 9789813144484 |
ISBN-13 |
: 9813144483 |
Rating |
: 4/5 (84 Downloads) |
Synopsis R In Finance And Economics: A Beginner's Guide by : Abhay Kumar Singh
This book provides an introduction to the statistical software R and its application with an empirical approach in finance and economics. It is specifically targeted towards undergraduate and graduate students. It provides beginner-level introduction to R using RStudio and reproducible research examples. It will enable students to use R for data cleaning, data visualization and quantitative model building using statistical methods like linear regression, econometrics (GARCH etc), Copulas, etc. Moreover, the book demonstrates latest research methods with applications featuring linear regression, quantile regression, panel regression, econometrics, dependence modelling, etc. using a range of data sets and examples.