A Stochastic Grammar of Images

A Stochastic Grammar of Images
Author :
Publisher : Now Publishers Inc
Total Pages : 120
Release :
ISBN-10 : 9781601980601
ISBN-13 : 1601980604
Rating : 4/5 (01 Downloads)

Synopsis A Stochastic Grammar of Images by : Song-Chun Zhu

A Stochastic Grammar of Images is the first book to provide a foundational review and perspective of grammatical approaches to computer vision. In its quest for a stochastic and context sensitive grammar of images, it is intended to serve as a unified frame-work of representation, learning, and recognition for a large number of object categories. It starts out by addressing the historic trends in the area and overviewing the main concepts: such as the and-or graph, the parse graph, the dictionary and goes on to learning issues, semantic gaps between symbols and pixels, dataset for learning and algorithms. The proposal grammar presented integrates three prominent representations in the literature: stochastic grammars for composition, Markov (or graphical) models for contexts, and sparse coding with primitives (wavelets). It also combines the structure-based and appearance based methods in the vision literature. At the end of the review, three case studies are presented to illustrate the proposed grammar. A Stochastic Grammar of Images is an important contribution to the literature on structured statistical models in computer vision.

Bayes Rules!

Bayes Rules!
Author :
Publisher : CRC Press
Total Pages : 606
Release :
ISBN-10 : 9781000529562
ISBN-13 : 1000529568
Rating : 4/5 (62 Downloads)

Synopsis Bayes Rules! by : Alicia A. Johnson

Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics." Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.

Bayesian Core: A Practical Approach to Computational Bayesian Statistics

Bayesian Core: A Practical Approach to Computational Bayesian Statistics
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 1441922865
ISBN-13 : 9781441922861
Rating : 4/5 (65 Downloads)

Synopsis Bayesian Core: A Practical Approach to Computational Bayesian Statistics by : Jean-Michel Marin

This Bayesian modeling book is intended for practitioners and applied statisticians looking for a self-contained entry to computational Bayesian statistics. Focusing on standard statistical models and backed up by discussed real datasets available from the book website, it provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical justifications. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book.

Bayesian Learning for Neural Networks

Bayesian Learning for Neural Networks
Author :
Publisher : Springer
Total Pages : 204
Release :
ISBN-10 : 0387947248
ISBN-13 : 9780387947242
Rating : 4/5 (48 Downloads)

Synopsis Bayesian Learning for Neural Networks by : Radford M. Neal

Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.

Bayesian Methods for Non-gaussian Data Modeling and Applications

Bayesian Methods for Non-gaussian Data Modeling and Applications
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : OCLC:1108667043
ISBN-13 :
Rating : 4/5 (43 Downloads)

Synopsis Bayesian Methods for Non-gaussian Data Modeling and Applications by : Tarek Elguebaly

Finite mixture models are among the most useful machine learning techniques and are receiving considerable attention in various applications. The use of finite mixture models in image and signal processing has proved to be of considerable interest in terms of both theoretical development and in their usefulness in several applications. In most of the applications, the Gaussian density is used in the mixture modeling of data. Although a Gaussian mixture may provide a reasonable approximation to many real-world distributions, it is certainly not always the best approximation especially in image and signal processing applications where we often deal with non-Gaussian data. In this thesis, we propose two novel approaches that may be used in modeling non-Gaussian data. These approaches use two highly flexible distributions, the generalized Gaussian distribution (GGD) and the general Beta distribution, in order to model the data. We are motivated by the fact that these distributions are able to fit many distributional shapes and then can be considered as a useful class of flexible models to address several problems and applications involving measurements and features having well-known marked deviation from the Gaussian shape. For the mixture estimation and selection problem, researchers have demonstrated that Bayesian approaches are fully optimal. The Bayesian learning allows the incorporation of prior knowledge in a formal coherent way that avoids overfitting problems. For this reason, we adopt different Bayesian approaches in order to learn our models parameters. First, we present a fully Bayesian approach to analyze finite generalized Gaussian mixture models which incorporate several standard mixtures, such as Laplace and Gaussian. This approach evaluates the posterior distribution and Bayes estimators using a Gibbs sampling algorithm, and selects the number of components in the mixture using the integrated likelihood. We also propose a fully Bayesian approach for finite Beta mixtures learning using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) technique which simultaneously allows cluster assignments, parameters estimation, and the selection of the optimal number of clusters. We then validate the proposed methods by applying them to different image processing applications.

Advances in Neural Information Processing Systems 19

Advances in Neural Information Processing Systems 19
Author :
Publisher : MIT Press
Total Pages : 1668
Release :
ISBN-10 : 9780262195683
ISBN-13 : 0262195682
Rating : 4/5 (83 Downloads)

Synopsis Advances in Neural Information Processing Systems 19 by : Bernhard Schölkopf

The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.

Interpretable Machine Learning

Interpretable Machine Learning
Author :
Publisher : Lulu.com
Total Pages : 320
Release :
ISBN-10 : 9780244768522
ISBN-13 : 0244768528
Rating : 4/5 (22 Downloads)

Synopsis Interpretable Machine Learning by : Christoph Molnar

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.